
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2003

On-chip adaptive components for balanced
computing
Rama Subba Reddy Sangireddy
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons, and the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Sangireddy, Rama Subba Reddy, "On-chip adaptive components for balanced computing " (2003). Retrospective Theses and
Dissertations. 1459.
https://lib.dr.iastate.edu/rtd/1459

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/1459?utm_source=lib.dr.iastate.edu%2Frtd%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

On-chip adaptive components for balanced computing

by

Rama Subba Reddy Sangireddy

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Arun K. Somani, Major Professor

Morris Chang
David Fernandez-Baca

Suraj Kothari
Akhilesh Tyagi

Iowa State University

Ames, Iowa

2003

Copyright (g) Rama Subba Reddy Sangireddy, 2003. All rights reserved.

www.manaraa.com

UMI Number: 3105102

UMI
UMI Microform 3105102

Copyright 2003 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

ii

Graduate College
Iowa State University

This is to certify that the doctoral dissertation of

Rama Subba Reddy Sangireddy

has met the dissertation requirements of Iowa State University

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

iii

DEDICATION

To my mother

who works incessantly and untiringly to make our lives better, and

who stood strong and tall like a banyan tree as we flourished around her like vines.

www.manaraa.com

iv

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES xii

ABSTRACT xiv

1 INTRODUCTION 1

1.1 Motivation 4

1.2 Impact of Research 6

1.3 Summary of Dissertation 7

2 EFFECTIVE REGISTER FILE ORGANIZATION 9

2.1 Introduction 9

2.2 Register Lifetime Analysis 11

2.2.1 Analysis Methodology 13

2.3 TriBank Register File Organization 17

2.3.1 Register Value Fetching to RF1 19

2.3.2 Freeing of Registers in RF2 and RF3 22

2.3.3 Impact on Bypass Logic 24

2.3.4 Handling Precise Exceptions 24

2.4 Performance Evaluation 25

2.4.1 Simulation Methodology 25

2.4.2 Results and Analysis 27

2.5 Related Research 31

2.6 Summary 36

www.manaraa.com

V

3 ADAPTIVE REGISTER PILE 38

3.1 Introduction • 38

3.2 Related Research 39

3.3 Adaptive Register File Architecture 40

3.3.1 ARC as a Computing Unit 42

3.3.2 ARC as an Additional Register Bank 50

3.4 Performance Analysis 52

3.5 Summary and Future Work 55

4 LOW-POWER HIGH-PERFORMANCE ARCHITECTURES ... 58

4.1 ABC Microprocessor 59

4.1.1 RFC Microarchitecture 60

4.1.2 Computing Structure in RFC Modules 63

4.1.3 Access Time and Energy Dissipation 67

4.2 Architecture Simulator for ABC Implementation 70

4.2.1 Instructions to Utilize RFC 70

4.3 Performance of ABC Processor 76

4.4 Power Estimation in ABC Processor 78

4.4.1 Power Estimation Models 80

4.4.2 Power Estimation in RFC 82

4.4.3 Results and Analysis 84

4.5 Summary 90

5 TIMING CONFIGURATION SWITCH 92

5.1 RFC Integrated Microarchitecture 93

5.1.1 Instructions to Utilize RFC 94

5.1.2 Mechanism for the Computation in RFC 95

5.2 Performance of ABC Architecture 98

5.3 RFC Configuration Schemes 101

5.3.1 Scheme 1: One-time configuration of RFC . . 103

5.3.2 Scheme2: Continual configuration of RFC 103

www.manaraa.com

vi

5.4 Analysis of Execution Time 104

5.4.1 Execution Time Analysis With One-Time RFC Configuration . . 107

5.4.2 Execution Time Analysis With Continual RFC Configuration . . 109

5.4.3 Effect of Number of Core Function Instances (N) 110

5.4.4 Effect of Percentage of Core Function (P) Ill

5.4.5 Effect of Cache Blocking Factor (<f>) Ill

5.5 Results and Analysis Ill

5.6 Future Work 115

5.7 Summary 117

6 IP ADDRESS LOOKUP ENGINE 118

6.1 Introduction 118

6.2 Longest Prefix Matching 120

6.3 Related Research 122

6.3.1 Binary Decision Diagrams 125

6.4 BDD Based IP Address Lookups 126

6.4.1 Motivation 126

6.4.2 Details of the Scheme 126

6.4.3 deducing Egflectiwe JVbdea 127

6.4.4 Implementation Issues . 130

6.5 Results and Analysis 131

6.5.1 Routing Table Update 132

6.5.2 Scalability to IPv6 136

6.6 Summary 137

7 CONCLUSIONS 139

7.1 Future Research 140

BIBLIOGRAPHY 142

ACKNOWLEDGMENTS 151

BIOGRAPHICAL SKETCH 154

www.manaraa.com

vii

LIST OF FIGURES

1.1 Bridging the gap • 3

2.1 Various stages in the lifetime of a physical register, for a partic-

ular mapping to a logical register 12

2.2 Physical register lifetime distribution in (above) absolute number

of cycles (below) percentage of lifetime, for SPEC 2000 integer

benchmarks 15

2.3 Physical register lifetime distribution in (above) absolute number

of cycles (below) percentage of lifetime, for SPEC 2000 floating

point benchmarks. . 16

2.4 A TriBank Register file in the pipeline of the processor. 17

2.5 A TriBank Register file organization 18

2.6 Example code 1 21

2.7 Example code 2 23

2.8 Instructions per cycle (IPC) throughput for various register file

configurations in the 4-wide issue processor 28

2.9 Instructions per cycle (IPC) throughput for various register file

configurations in the 8-wide issue processor. . 29

2.10 Relative instruction throughput when register access time is fac­

tored in for various register file configurations in the 4-wide issue

processor 30

www.manaraa.com

viii

2.11 Relative instruction throughput when register access time is fac­

tored in for various register file configurations in the 8-wide issue

processor 31

2.12 Percentage of run time during which at least one free register

exists for various register file configurations in the 4-wide issue

processor . 32

2.13 Percentage of run time during which at least one free register

exists for various register file configurations in the 8-wide issue

processor. 33

3.1 ARC unit placement in the processor pipeline 40

3.2 32-bit 8-cycle Reconfigurable Matrix Multiplier. The write en­

able (WE) and clock signals are connected (not shown in figure)

to all the LUTs. The multi-stage addition of partial products

using CSAs is pipelined as shown. The end result, is computed in

a carry propagate adder (CPA) 44

3.3 Matrix multiplication in a ARC unit (shown excluding load/store

and branch instructions) 46

3.4 32-bit 4-cvcle Reconfigurable Matrix Multiplier. The write en­

able (WE) and clock signals are connected (not shown in figure)

to all the LUTs. The pipelined addition of partial products using

CSAs is performed as shown in Figure 3.2 47

3.5 32-bit 2-c.ycle Reconfigurable Matrix Multiplier (partially shown).

The write enable (WE) and clock signals are connected (not

shown in figure) to all the LUTs. The pipelined addition of par­

tial products using CSAs is performed as shown in Figure 3.2. . 48

3.6 A register sub-bank in the ARC unit 51

3.7 Matrix multiplication in 4-wide out-of-order superscalar proces-

sor without ARC unit, and with ARC unit 54

www.manaraa.com

ix

3.8 Matrix multiplication in 8-wide out-of-order superscalar proces-

sor without ARC unit, and with ARC unit 55

3.9 Matrix multiplication in 16-wide out-of-order superscalar proces­

sor without ARC unit, and with ARC unit 56

4.1 ABC: RISC superscalar processor coupled with a 4-way RFC. . . 60

4.2 Data array structure in one module of A-way set associative RFC.

The data array in other modules is similarly arranged 62

4.3 One tap of FIR filter implemented in four rows of LUTs in an

RFC module with 8 columns of LUTs. The blank LUTs do not

participate in computation mode, but function normally in mem-

ory mode 65

4.4 Two successive processing elements (PEs) for DCT/IDCT, imple­

mented in four rows of LUTs in an RFC module with 8 columns

of LUTs. The blank LUTs do not participate in computation

mode, but function normally in memory mode 66

4.5 Access time, at 0.8 micron CMOS technology, in conventional

cache and the RFC for Convolution algorithm implementation.

x-axis indicates the cache associativity from 2- to 32-way, for each

cache size in KB 68

4.6 Energy dissipation, at 0.8 micron CMOS technology, in conven-

tional cache and the RFC for Convolution algorithm implemen-

tation. x-axis indicates the cache associativity from 2- to 32-way,

for each cache size in KB 69

4.7 rfc instructions for loading and storing "word" type of data ... 71

4.8 State transition for the RFC cache 73

4.9 Performance of ABC processor vs. base processor for a 32KB

4-way cache with a line size of 32B 78

4.10 Component power utilization in ABC processor vs. base proces-

sor for MPEG2 decode application. 85

www.manaraa.com

X

4.11 Component power utilization in ABC processor vs. base proces-

sor for MPEG2 encode application 86

4.12 Component power utilization in ABC processor vs. base proces­

sor for FIR application 87

4.13 Component power utilization in ABC processor vs. base proces­

sor for cjpeg application 88

4.14 Component power utilization in ABC processor vs. base proces­

sor for IIR application 89

4.15 Total power utilization in ABC processor vs. base processor using

(a) Alpha processor model (b) Pentium-Pro model 90

5.1 Reconfigurable Functional Cache (RFC) organizations and ad­

dress mapping with (a) 4 cache modules (b) 16 cache modules. . 93

5.2 Normalized execution cycles in base processor without RFC and

ABC processor with RFC, with varying cache organizations. . . 99

5.3 Distribution of core functions in MPEG applications 102

5.4 Variation of cache blocking factor with the fraction of core function. 108

5.5 Variation of cache blocking factor with speed-up in core function. 109

5.6 Normalized execution cycles in the base processor without RFC,

and the ABC processor with different RFC configuration schemes. 113

5.7 Relative performance improvement in two RFC configuration schemes. 114

5.8 Architectural Design Space 116

6.1 Packet routing based on longest prefix matching mechanism. . . 121

6.2 Function / = %oZi + ^1^2 + ^2^0 represented as (a) Binary

decision tree and (b) BDD 125

6.3 Binary decision tree for the sample routing table. Dotted nodes

are redundant. 127

6.4 Binary decision tree for (a) (b) with all effective

nodes assigned with output. Dotted nodes are redundant 128

www.manaraa.com

xi

6.5 BDDs for (a)N^Pi. (b)AWo 128

6.6 (a) Nodes with assigned NHP ports. (b),(c),(d),(e) Output bits

assigned to each of the nodes in 4-bit binary encoding of NHP.

Dotted nodes are redundant 129

6.7 CLB mapping in FPGA 131

6.8 (a) Binary decision tree representation of the modified routing

table. Dotted nodes are redundant, (b) Modified BDD for N H PQ. 134

6.9 Aggregatable Global Uni cast Address for IPv6. . 137

www.manaraa.com

xii

LIST OF TABLES

2.1 Simplescalar simulation parameters 14

2.2 Configurations for various register file organizations simulated.

A bus from RF2 to RF3 indicates additional one read port for

RF2 and one write port for RF3. Access time is measured at 0.18/4. 26

3.1 Simplescalar simulation parameters 41

3.2 On-chip area for ARC design using 3-LUTs, implemented at

0.18/4 technology. Area overhead is ARC unit area excluding

LUTs (registers). . 50

3.3 Register access time in the ARC unit at 0.18// technology. 51

3.4 Various processor configurations simulated 52

4.1 Comparative performance results of ABC processor and base pro­

cessor for various benchmarks, for a 32KB 4-way cache with a line

size of 32B 76

4.2 Listing of heuristic power estimations for Alpha processor model 81

4.3 Listing of heuristic power estimations for Pentium-Pro processor

model 82

5.1 Architecture Design Parameters 105

5.2 Variation in parameters for various RFC configuration schemes. . 107

6.1 A sample routing table. 120

6.2 Data throughput and packet processing time budgets for ATM

over SONET. Packet size considered is 40 bytes. . 122

www.manaraa.com

xiii

6.3 Effective nodes for sample routing tables and the real-time 32-bit

IP MAE-east routing table with 24792 prefixes 130

6.4 Lookup time performance analysis of BDD based routing engine.

Throughput is number of packets per second 132

6.5 Modified routing table 133

6.6 Number of corresponding nodes in each level of binary decision

trees that differ in their output. The two binary decision trees

compared are for adjacent snapshots of real-time MAE-east rout-

ing table 135

www.manaraa.com

xiv

ABSTRACT

The demand for higher computing power to effectively execute compute-intensive

functions and thus more on-chip computing resources is ever increasing. On the other

hand, design of an effective register file architecture is becoming a bottleneck for meeting

the memory-bandwidth demand of modem wide-issue dynamically scheduled superscalar

processors. A need for a balance in the memory-bandwidth and the computing rate is

significant to achieve a higher processor throughput. Further, at the advent of mobile

and ad-hoc computing, processors are being expected to consume lesser amounts of

energy even while delivering higher performance. This dissertation aims to address the

above issues in the context of reconfigurable architectures, with the underlying concept

of utilizing on-chip components for memory or computing purposes depending on the

demand from an application. To efficiently utilize silicon real-estate on the chip, we

exploit the possibility of using on-chip memory elements as computing units.

First, this dissertation proposes TriBank. Register file architecture, a novel register

file organization for wide-issue dynamically scheduled superscalar processors. The orga-

nization exploits long latencies in the lifetime of a register to meet the two requirements

of a small register access time and a large memory bandwidth. Implementation of the

TriBank register file organization, as compared to a conventional monolithic register

file in an 8-wide out-of-order issue superscalar processor enhanced the throughput in

instructions per cycle (IPC) by 3% and 14%, for Speclnt2000 and SpecFP2000, respec­

tively. When the register file access time is factored in, the instruction throughput is

enhanced up to 56% and 96%, for Speclnt2000 and SpecFP2000, respectively. The sig­

nificant contribution of our proposed register file architecture is that it enhances IPC,

when earlier work in designing effective register file has resulted in IPC degradation.

www.manaraa.com

XV

Next, the dissertation proposes TZegwfer Fife Computing (L4AC) unit, a

novel on-chip processing element that leverages application-specific processing capabil­

ities. The ARC unit supplements a conventional register file to provide large memory

bandwidth, or acts as a configurable computing unit to provide higher on-chip computing

capacity, depending on the requirement of a specific application. When an out-of-order

8-wide issue superscalar processor is supplemented with the ARC unit to process ma­

trix multiplication, a compute-intensive core function in most multimedia applications,

results show a performance increase of up to 12%. Similarly, a 17% performance enhance­

ment is seen when the matrix multiplication is performed in an out-of-order 16-wide issue

superscalar processor supplemented with the ARC unit. The dissertation also discusses

the microarchitecture level details for the implementation of the ARC unit.

The dissertation also explores the ability of the reconfigurable computing models

in delivering high performance while providing with significant savings in the energy

dissipation in the various on-chip components of the processor. For the Reconfigurable

Computing Cache (RFC) based processor, developed earlier to utilize a module of an

LI data cache is used as a coprocessor to process compute intensive multimedia applica­

tions, the impact of RFC on cache access time and energy dissipation has been explored.

We show that reduced number of cache accesses and lesser utilization of other on-chip

resources, due to a significant reduction in execution time of application, will result in

energy savings. The results show that up to 60% reduction in power consumption is

achieved for MPEG decoding, and a reduction in the range of 10% to 20% for various

other multimedia applications. This dissertation further explores the issues of manage­

ment of RFC, where the impact of various schemes for configuration of core function

into the RFC module is studied. It also gives a detailed analysis on the performance

of the RFC based processor in terms of the execution time of application for various

configuration schemes, including the study of the effect of the percentage of the core

function in an entire application over the management of RFC modules.

www.manaraa.com

1

1 INTRODUCTION

Multimedia and digital signal processing applications demand more and more com-

puting power. The widely known 90-10 rule predicates that 90% of the execution time is

expended by about 10% of the application code which is compute intensive and that the

remaining 10% of the execution time is consumed by inner loops in general. The spatial

structures excel in the execution of such compute intensive functions as compared to

the temporal structures [19]. The spatial structures help overcome the key performance

bottleneck of processor-memory communication bandwidth gap as experienced in the

general purpose microprocessors.

Rather than juggling the intermediate results in and out of registers and memory,

the spatial compute engine is customized so that the data Sows directly from source to

sink. For example, a spatial implementation of a simple filter, takes in a new sample

and computes a new result in a single cycle. On the contrary, a temporal structure

like a general purpose processor or a DSP takes a few cycles to evaluate each filter tap,

easily running tens of cycles for even the simplest filter structures. Further, the recon-

figurability of such spatial structures provides flexibility to the system for executing a

wide range of compute intensive functions. The time for loading the configuration of a

particular function can be amortized over long execution time and hence can be oGset

by the speed-up obtained. On the other hand, it is to be noted that the reconfigurable

devices get bogged down on the large portions of the code that are rarely executed with

repetition and hence loading the configuration for every small segment of computation

forms the bottleneck. Hence a practical compromise is to couple a reconfigurable de-

vice with a conventional processor in order to exploit the strengths and overcome the

limitations of each.

www.manaraa.com

2

Subsequently, the concept of a general purpose processor with a tightly coupled

reconfigurable logic arrays has been widely recognized as the main focus for the develop­

ment of future computing systems. To meet the increasing demand for more computing

power, the technology of implementing a compute intensive function in a single recon­

figurable hardware unit has evolved to accelerate the execution of selective functions.

Such reconfigurable chips are used as coprocessors in tandem with the general purpose

processor. In such hybrid computing models, it is necessary that the reconfigurable logic

be subservient to the traditional processor, which will be the master processor, for at

least two reasons: (1) the traditional processor executes the control code which logically

binds together the various computations the reconfigurable device will perform, and (2)

execution on the traditional processor then becomes the default condition, thus making

the hybrid machine compatible to the existing computing practice.

In the past decade, the research community in the area of Reconfigurable Computing

has built various models based on the following principles: (1) Reconfigurable devices

may do well with compute intensive functions in applications, but traditional processors

are still superior in the execution of remaining code that is irregular and/or rarely re­

peated. (2) For reconfigurable computing to be economically viable, the various parts

included in the design have to be squeezed down to one chip. (3) Reconfigurable hard-

ware will not meet its full potential unless reconfiguration time is minimized and the

reconfigurable hardware also has access to the system's memory that is at least as good

as that available to the main processor. For an efficient utilization of the reconfigurable

hardware in the system, the essential characteristic of all the computing models is that

some amount of state is semi-static, i.e., it changes frequently enough to take advantage

of programmability but slow enough to mask the hardware configuration time.

The reconfigurable computing architectures have been developed to exploit the per­

formance of the customized hardware units and the flexibility of the traditional pro­

cessors. Conventional general purpose processors and the custom computing hardware

units live at the extreme ends of a rich architectural space, as shown in Figure 1.1.

The reconfigurable platforms are heading from niche to mainstream, bridging the gap

www.manaraa.com

3

between ASICs and the microprocessor.

Rcconi'igurablc
CoinputinL
S\ stem1»

ASIC

53-

Performance

Figure 1.1 Bridging the gap.

Exploding design cost and shrinking product life cycles of ASICs create a demand

on reconfigurable logic array usage for product longevity. Performance is only one part

of the purpose of development of the reconfigurable computing models. The need is also

there to fully exploit the flexibility of the adaptive hardware. Many system-level inte­

grated future products without reconfigurability will not be competitive [29]. Instead

of the technology progress, better architectures using reconfigurable arrays is the key to

keep up the current innovation rate beyond the limits of the silicon. The commercial

acceptability of a computing model mainly depends on its ability to execute various

applications that would be developed even after the design of the computing model.

In other words, the flexibility of the current computing models to adopt various future

applications will determine their survivability. Hence, the reconfigurable hardware, in­

tegrated with the main processor to accelerate the compute intensive functions, has to

be designed with a certain degree of flexibility to implement a wide range of special

functions.

I
E

IP

www.manaraa.com

4

Contrary to the usage of FPGAs, the popular reconfigurable devices that provide

fine grain reconfigurability, the field of reconfigurable computing prefers the use of coarse

grain reconfigurable arrays with datapath width greater than one bit. This is due to the

fact that the fine-grained architectures are much less efficient due to a huge routing area

overhead and poor mutability. Thus, to accelerate structured and regular computations,

such as DSP and multimedia applications, a reconfigurable logic that is specialized for

these computations has been developed and integrated into on-chip microprocessors [30,

85, 17, 59, 81]. This kind of customized computing units could produce high performance

for those computations. However, the on-chip reconfigurable logic may result in relatively

low utilization of the on-chip resources when only a few computations exploit the logic.

One of the factors that is significant to consider, while building an efficient computing

model, is that it is important to ensure that all the hardware resources available on the

chip be utilized to the maximum extent possible for wide range of applications. For

example, current processor designs often devote a largest fraction (up to 80%) of on-chip

transistors to caches. However, many workloads, like the media processor applications,

do not fully utilize the large cache resources due to the streaming nature and the lack of

temporal locality for the data. On the contrary, these multimedia applications require

more computing resources due to the fact that they primarily are compute intensive

functions.

1.1 Motivation

The increase in performance of the memory system is unable to meet the phenomenal

increase in the microprocessor performance [31]. Hence computer designers continuously

face the challenge of bridging this increasing processor-memory performance gap, to

improve the computer system performance. An ideal memory system, that can serve

the CPU requests instantaneously, is impractical to implement as the three factors of

memory (capacity, speed, and cost) are in contraposition. To alleviate this problem,

smaller faster memories are placed on-chip closer to the central processing unit (CPU),

at a moderate cost, to intercept and exploit locality of requests to larger, slower, and

www.manaraa.com

5

cheaper memories.

Modern general-purpose computers contain registers, one or two levels of cache mem­

ory, main memory, and virtual memory, in that order along the path of CPU's request

for data. With the advent of dynamically scheduled wide-issue out-of-order superscalar

processors, the demand for high-performance memory system is growing. Microproces­

sor designers exert to increase the issue width to achieve high performance. Wider issue

processors require more ports in the register file which has an adverse affect on the

register access time. Besides, a wide-issue superscalar processor is effective only if as

many instructions as possible are issued each cycle, which implies that the processor

has to view a larger instruction window to achieve sufficient amounts of instruction level

parallelism (ILP). Large instruction window implies a larger set of in-flight instructions

requiring a larger number of physical registers [25]. However, increasing the size of

register file adversely affects the register access time.

A task when computed at certain processing rate (instructions per second) requires

a certain memory bandwidth (bytes per second). The memory bandwidth requirements

depend on the size and organization of the on-chip memory (registers and caches). A

computation is said to be Wonced, if the memory bandwidth of the processor exactly

matches the memory bandwidth requirements of the computation with a fixed local

memory configuration [44]. In this context, all the three parameters in the system:

computation rate, on-chip memory configuration, and memory bandwidth, are fixed. It

is not feasible to achieve balanced computation for most general purpose computations

using such fixed processor configuration. However, if the parameters in consideration are

dynamically variable it is possible to push the system towards a balanced computation

and achieve a higher throughput (instructions per second).

Based on the above observations, the dissertation proposes AdopZtwe er vlr-

chitecture, a novel architecture for dynamic superscalar processors that strives towards

achieving the three requirements for greater performance: larger memory bandwidth,

higher on-chip computing power, and balanced computing. The development of an

AdopWwe Aegiafer Anc/wfecZuns first constitutes the design of a register file organiza­

www.manaraa.com

6

tion that effectively meets the demand for large memory bandwidth in dynamic super­

scalar processors. The next phase involves the design of a register file that can act as a

computing unit when higher on-chip computing power is demanded by an application.

Keeping in pace with the current requirement of power-aware architectures, the dis­

sertation also explores the ability of the reconfigurable computing models in delivering

high performance while providing with significant savings in the energy dissipation in

the various on-chip components of the processor. Further, in continuance of our effort

to build an efficient reconfigurable architecture with minimum configuration overhead,

various configuration schemes have been studied. A detailed study of the performance

analysis of the architecture, in terms of the execution time of the application, is given.

The impact of various architectural parameters and the factors governing the struc-

ture of an application over the execution time of an application has been extensively

studied. With the help of the study undertaken, the design of reconfigurable archi­

tecture can be incorporated with the dynamic decision capability, so that appropriate

configuration scheme is chosen dynamically for running a particular application. The

dissertation also delves into the possibility of targeting compute intensive applications

in the area of computer communications, to be computed in reconfigurable elements.

The research discusses in detail the problem of address lookups in IP domain for the

fast routing of communication packets, that forms a bottleneck in designing efficient

network processors. A reconfigurable hardware based solution is proposed to deliver

high performance.

1.2 Impact of Research

As the designers strive continuously to enhance the performance of dynamic super­

scalar processors by adding new structures or modifying the existing components on

the chip, the complexity of the processor has been increasing. A wide spread research

is currently underway to effectively address this increasing complexity in dynamic su­

perscalar processors to scale with the technology and other influencing factors. One of

the primary goals of this dissertation is to design an effective register file organization

www.manaraa.com

7

for dynamic superscalar processors. The dissertation first performs a quantitative and

qualitative analysis of the lifetime of a physical register in a superscalar processor, before

proceeding to design an effective register file organization.

The dissertation further explores the idea of using various on-chip memory com-

ponents for computational purposes. The dissertation aims to show that applications

depending on their nature, demand either higher computing capacity or larger memory

bandwidth or both. Hence, providing memory and computing resources on-chip that are

fixed in nature is expensive and does not enable an efficient utilization of silicon real es­

tate on-chip. Instead, it is more beneficial to design a portion of on-chip resources to be

reconfigurable, so that it can be used either as a memory element or a computing unit,

as the situation demands. For the purpose, the dissertation developed Aeg-

Wer /ik architecture, a novel architecture to address the above problems concurrently.

The Adaptive Register file Computing (ARC) unit provides a higher on-chip computing

capacity by executing a compute-intensive function, and provides a larger register file

resources to meet the memory bandwidth requirements.

1.3 Summary of Dissertation

This dissertation is organized as follows.

Chapter 2 This chapter presents the design of an effective register hie organization for

dynamic superscalar processors.

Chapter 3 In this chapter we discuss in detail the design of an Adaptive register hie

computing unit, that provides higher on-chip computing capacity when required.

Chapter 4 In this chapter we discuss the ability of reconfigurable architectures in de­

livering higher performance while resulting in lesser power consumption.

Chapter 5 This chapter presents a model and analysis of timing a configuration switch

to enable the design of an efficient reconfigurable computing architecture.

www.manaraa.com

8

Chapter 6 The IP address lookup problem, a compute intensive application that forms

a bottleneck in the performance of network processors is discussed in detail in this

chapter. A reconfigurable computation based hardware design for the problem is

proposed and thus the application is targeted for computing in a reconfigurable

coprocessor.

Chapter 7 The conclusions for the dissertation, along with the directions for future

research, are presented in this chapter.

The review of the earlier work has been discussed in each of the chapters as relevant

to the issues addressed.

www.manaraa.com

9

2 EFFECTIVE REGISTER FILE ORGANIZATION

2.1 Introduction

The increase in performance of the memory system is unable to compete with the

phenomenal increase in the microprocessor performance [31]. Hence computer designers

continuously face the challenge of bridging this increasing processor-memory perfor­

mance gap to improve the overall computer system performance. An ideal memory

system, that can serve the CPU requests instantaneously, is impractical to implement

as the three factors of memory (capacity, speed, and cost) are in contra-position. To

alleviate this problem, smaller faster memories are placed on-chip closer to the central

processing unit (CPU), at a moderate cost, to intercept and exploit locality of requests

to larger, slower, and cheaper memories. Modem general-purpose computers contain

registers, one or two levels of cache memory, main memory, and virtual memory, in that

order to service the CPU's request for data. With the advent of dynamically scheduled

wide-issue out-of-order superscalar processors, the demand for high-performance mem­

ory system is further growing. Wider issue processors require more ports in the register

file which has an adverse affect on the register access time. Besides, a wide-issue su­

perscalar processor is effective only if as many instructions as possible are issued during

each cycle, which implies that the processor has to view a larger instruction window

to achieve sufficient amounts of instruction level parallelism (ILP). Large instruction

window implies a larger set of in-flight instructions requiring a larger number of physical

registers. However, increasing the size of register hie adversely affects the register access

time.

Register access time, along with time delays in issue window, dispatch stage, and

www.manaraa.com

10

bypass logic in the processor pipeline mainly contributes toward designing the processor

cycle time [56]. As the issue width of the processor increases, the complexity of each of

these components increases, and a wide scale effort is underway to reduce the complexity

and its effects in the processor design. Parkas eZ oZ [25] have shown that an 8-wide

issue superscalar processor handling precise exceptions increases the average instruction

throughput (IPC) as the register file size is increased up to 256. Besides, the portion

of execution time during which there is at least one free physical register available,

for logical register renaming at dispatch stage, increases considerably as the register

file size increases. This is important for dispatching as many instructions as possible

to instruction window to draw more ILP. However, the processor loses performance in

terms of average number of billion instructions per second (BIPS) for a register file size

beyond 128. This happens due to the adverse impact of the large register file access

time on the processor cycle time. On the other hand, Lebeck et al have proposed a fast

instruction issue window assisted by a large wait instruction buffer (WIB) of size up to

2K entries for extracting higher amounts of instruction level parallelism (ILP) [47]. For

such a large instruction window size to be utilized to the maximum extent possible, it

is necessary that as many instructions as possible are renamed at the dispatched stage.

This is possible only with an availability of a large number of physical registers. Hence,

design of an efficient register file, with as many registers as possible, but with a smaller

register access time, is essential for an effective superscalar processor design.

Using the above observations, we develop a TKBont Register /Be, a register file

architecture that performs well in meeting the following two main goals:

* Provide a small register access time to enable a faster processor cycle time and

thus enhance the throughput of number of instructions per second (IPS).

* Provide a large number of registers to enable dispatching as many instructions as

possible to issue window for extracting higher ILP, thus enhancing the throughput

of number of instructions per cycle (IPC).

The above two goals are met by designing a register file that exploits long latencies

www.manaraa.com

11

involved, in between allocation of register to a logical value and actual consumption of

the value by a functional unit, and then in between consumption of the value and actual

freeing of physical register for next allocation.

The rest of the chapter is organized as follows. In Section II, we provide a detailed

analysis of the register life time as a precursor for our proposed design. In Section III,

we present a detailed design of the proposed register file organization. The section also

discusses the necessary modifications in the microarchitecture. Section IV analyzes the

performance of the architecture. Section V discusses the related work done. Section VI

concludes the chapter.

2.2 Register Lifetime Analysis

While undertaking the task of designing an effective register file for next generation

superscalar processors, first we study and analyze the activity of a physical register

during its lifetime one logical to physical mapping. For this purpose, we consider a DEC

Alpha 21264 processor [39] based microarchitecture. The Alpha 21264 processor consists

of a deep pipeline with fetching and renaming of instructions performed in-order. When

the source operands of an instruction waiting in issue stage are ready, the instruction is

issued for execution. Once granted execution, the register tags of source operands of the

instruction are used to access the register file in the register read stage of the pipeline.

The operand values read from the register file are forwarded to the appropriate functional

unit in the execute stage of the pipeline. If a dependent operation is issued for execution

immediately following the current instruction, the dependent instruction will read a stale

value from the physical register file. A bypass logic is provided in the execute stage to

select between the incoming register operand, or a more recent value on the bypass bus.

Dependent instructions that execute in subsequent cycles must communicate via the

bypass bus. All other instructions communicate through the physical register file.

The logical destination register for an instruction fetched is mapped to a free physical

register at the dispatch stage. Subsequent instructions with the same logical register as

their source operand are assigned to read from the mapped physical register. The logical

www.manaraa.com

12

to physical register mapping remains active until another instruction with same logical

register as its destination enters the dispatch stage. The logical destination of that

instruction is then mapped to another free physical register and the process continues.

The dispatch stage in the pipeline is stalled when no free physical register is available.

This scheme of logical to physical register mapping eliminates the write after read (WAR)

and write after write (WAW) data dependencies. The earlier allocated physical register

is freed only when the subsequent instruction with same logical destination is committed.

This is done to enable the recovery from branch mis-predictions and handle exceptions

precisely. The conditions for freeing registers are described in more detail in [25].

time when a physical time when the physical time when the time when the

register is mapped register is written register is register is

to a logical register with a value first consumed last consumed

/I
10

SO
tl

SI

Quiescent
state

Quiescent

state

G t3
S2

Active

state

time when the

register is freed

time

S3
t4

Quiescent

state

Figure 2.1 Various stages in the lifetime of a physical register, for a partic­
ular mapping to a logical register.

The life cycle of a physical register is identified as the time between its allocation to

a logical destination at the dispatch stage and the time when it is freed. The various

stages in the register lifetime, as illustrated in Figure 2.1, are:

tO: Time at which a free physical register Bp is allocated to a logical destination

register of an instruction at the dispatch stage in the processor pipeline.

t l : Time at which Ep is writ ten with a value. This happens when the instruction

is in the writeback stage.

www.manaraa.com

13

t2: Time at which the value in Ap is first consumed. This happens when an instruction

with a logical source operand of A;, is issued for execution.

t3: Time at which the value in Ap is consumed for the last time. This happens

when an instruction (m > Z), with a logical source operand of is issued

for execution and no further instructions use Ri as source operand until the Ri

becomes a destination register for another instruction h+n-

t4: Time at which the physical register Rp is freed and is ready for the next allocation.

This happens when instruction 7&+n, with logical destination #*, is committed.

A conventional monolithic register file maintains the mapping of the physical register

throughout the life cycle of each logical to physical mapping. Note that at the microar­

chitecture level it is easy to identify when a register value is first consumed. However,

it. is not easy to determine when it is consumed for the last time. To do so, it requires a

large overhead of keeping track of all the instructions that are potential customers for the

operand using some sort of counting mechanism to track the instructions as and when

they are executed. In this study, we first identify the time of first and last consumption

of a register value for only the purpose of analyzing the register activity during lifetime

of its allocation to a logical register. Using that next we develop our architecture where

we do not have to keep track of time of the first and last consumption of a register.

2.2.1 Analysis Methodology

To study a relationship among these various times, we used Simplescalar-3.0 [9]

for the Alpha AXP instruction set to simulate a dynamically scheduled out-of-order

issue superscalar processor with the simulation parameters depicted in Table 3.1. The

instructions are traced along the various stages of the processor pipeline and the time

intervals between various stages in the lifetime of a register are measured according to

the above mentioned specifications. The time intervals measured are:

tl-tO: Time during which the register is waiting for the result to be written into it after

it is allocated.

www.manaraa.com

14

t2-tl: Time during which the register is waiting to be read by a functional unit after it

is written into.

t3-t2: Time during which the register is active as supplier of an operand to functional

units.

t4-t3: Time during which the register is waiting to be freed after it is consumed for the

last time.

Table 2.1 Simplescalar simulation parameters.
Parameter VoZwe

/matrMctzon cache 32KB, 2-way, 32B line
- latency 1 cycle
Data cache 32KB, 4-way, 32B line
- latency 1 cycle
Branch predictor bimodal, 2K table size
—mis — prediction latency 7 cycles
—return address stack size 8
Instruction issue queue size 64 (INT and FP, each)
load/store g%e«e (.LSQ) size 128
ReOrder buffer (ROB) size 128
Issue width 2/4/8/16
Commit width 2/4/8/16
Functional units
—Integer arithmetic 8
—Integer multiplier 4
—floating point arithmetic 4
—floating point multiplier 4
Z/2 cac/ie 256KB, 4rway, 64B Une
—latency 6 cycles
TLB
-D - 2TB 512KB, 128 entries
-f - TIB 256KB. 64 entries
—latency 30 cycles
Memory
—latency first, next 70, 2 cycles
—bus width 8B

www.manaraa.com

15

Speclnt: Register life time distribution in absolute cycles

0SO DS1 S32 0S3

250

m88skim peri vortex Avg compress gcc

Speclnt: Register life time in percentage cycles

100%

o 80%

a 60% -I—

<D 40% -Q_

CM kf-loo ko
m88skim perl Avg vortex compress gcc

Figure 2.2 Physical register lifetime distribution in (above) absolute num­
ber of cycles (below) percentage of lifetime, for SPEC 2000 in­
teger benchmarks.

The average time interval between each stage of register lifetime is shown in Fig­

ures 2.2 and 2.3 for various Spec integer and floating point benchmarks, respectively.

The upper chart in each figure shows the register lifetime in absolute number of cycles

and the lower chart illustrates the same in terms of percentage of time for each interval.

The benchmark programs are simulated on the superscalar processor with various issue

widths. The register lifetime can be classified, as illustrated in Figure 2.1, into an active

state (82) where the register is supplying the values to functional units, and quiescent

states (SO, SI, and S3) where the physical register is inactive waiting for some action to

www.manaraa.com

16

SpecFP: Register life time distribution in absolute cycles

BSC QS1 HS2 DS3

250

$200

E 100

50

applu fpppp | hydro2d | mgrid turb3d su2cor waveS Avg swim

SpecFP: Register life time in percentage cycles

100% Tl

% 80% --

<5 40% ---

20% --

0%
lj*4-|cojcO
applu fpppp hydro2d turb3d Avg waveS

Figure 2.3 Physical register lifetime distribution in (above) absolute num­
ber of cycles (below) percentage of lifetime, for SPEC 2000 float­
ing point benchmarks.

take place. It can be observed that the average active time of the register is exceptionally

small (around 1% to 5%). This is mainly due to two reasons:

1. It is observed that around 85% of the time a register value is read at most once.

2. Some registers are never read as the value they hold are either supplied to their

consumers through the bypass logic or even not read at all.

The observations that emanate from the above analysis are:

* Physical registers are allocated at dispatch stage, early in the pipeline, and expe-

www.manaraa.com

17

rience a long latency before consumption.

* Amount of duration when the register is an active supplier of values to consumers

is very small as compared to its long lifetime.

* In a large register file the number of registers that are active suppliers of data

operands at a given time is small.

* After the last consumption by a functional unit, there is a long latency before a

register is freed up.

* A more aggressive logical to physical mapping at dispatch stage can be obtained

by hiding the latency in freeing of registers, with the support of a mechanism to

handle precise exceptions.

2.3 TriBank Register File Organization

The above observations lead us to design a TriBank register file architecture. Our

proposed architecture is shown in Figure 2.4. The TriBank Register file organization

consists of three banks of physical registers with a heterogeneous structure, as shown in

Figure 2.5. Each register bank consists of a different number of registers and different

number of ports according to the architecture requirements as discussed later. The

function of each register bank is described below.

RF2 RF3

RF1 ROB

Functional
Units

ISSUE
Queue

Register rename

DECODE

Figure 2.4 A TriBank Register file in the pipeline of the processor.

www.manaraa.com

18

TriBank Register file

RF3

RFl RF2

Mux

Figure 2.5 A TriBank Register file organization.

The bank RFl consists of a small number of registers and a sufficient number of ports

to support the issue width of the processor. The functional units are always supplied

with the data only from the registers in RFl.

The bank RF2 consists of a large number of physical registers and a few read and write

ports. The physical registers in RF2 are used for logical to physical register mapping at

dispatch stage. Results are always written to registers in RF2.

The bank RF3 also consists of a large number of registers and a few ports. Registers

in RF3 hold the values until the time they are freed when the conditions for precise

exception handling are met.

From Figures 2.2 and 2.3, we observe that the average time during intervals t2-t0

(= S0+S1) and t4-t3 (S3) is around 45-50% each. Thus, A register value will spend

duration t2-t0 (= S0+S1) in RF2 bank, and duration t4-t3 (S3) in RF3 bank. The bank

RF2 holds the register value typically during the first half of lifetime of its mapping,

while the bank RF3 holds the value for the second half of the lifetime. Therefore, we

propose that there be an equal number of registers in RF2 and RF3 banks.

The RFl bank only obtains those register values, from RF2 or RF3, that are soon

to be consumed, and holds the values in the active state 82. The register values in RF2

are written to RF3 whenever RF3 has free registers and thus simultaneously freeing

the corresponding registers in RF2. Section 2.3.2 discusses in detail the process of

www.manaraa.com

19

transferring register values from RF2 to RF3, and conditions for freeing of registers in

RF2 and RF3. Thus, the register in RF2 is &eed up much earlier than that is done in

a conventional monolithic register file. This leverages the processor to process a larger

number of in-flight instructions to draw higher ILP.

The following subsection discusses in detail the various mechanisms for register value

transferring to RFl for consumption.

2.3.1 Register Value Fetching to RFl

The issue stage in the processor consists of wakeup logic and select logic. The

instruction is said to be in wakeup state when it is in the reservation station waiting for

both its source operands to be ready. When an instruction has all its source operands

ready, it sends a ready signal to the select logic. The select logic sends a grant signal to

the instruction permitting it to be executed, when necessary functional unit is available.

The writing of register values to RFl from RF2 or RF3 occurs when the values are ready

to be consumed by an instruction that is ready to be issued for execution. To avoid any

delay, the source operands for an instruction are fetched to RFl, when the instruction

in the wakeup logic sends a ready signal to the select logic. This mechanism ensures

that the values are fetched to RFl just in time to be consumed, and also not much in

advance before being consumed.

It is necessary that all active registers to be consumed soon be kept in RFl. Thus

we proposed that RFl be maintained as a small fully associative register file, similar

to the Multi-banked register flies proposed by Cruz et oZ [15]. In this case, the values

are replaced according to the least recently consumed (LRC) policy. The registers in

RFl can also be easily marked as consumed or not-consumed, and replace only those

registers that are flagged. A pitfall with this scheme is that the register value, though

required, may not actually be read from the register file, but is supplied directly via the

bypass logic. In that case, the register would not be marked as consumed and hence

never replaced. To avoid this, instead of setting the flag for a register when it is read,

the flags are set whenever the consumer instruction is executed, irrespective of whether

www.manaraa.com

20

the source operands are read from RFl or obtained via the bypass logic.

At the microarchitecture level, it is easy to identify when the register is first consumed

(in fact nearly 85% of time, for both integer and Boating point applications, a register

value is consumed at most once). However, it is not possible to know in advance when

it is consumed for the last time without a large overhead of keeping track of all the

instructions that are customers for the operand. Hence, retaining the value in RFl

until it is completely consumed cannot be guaranteed with 100% accuracy. However,

the register value replacement in RFl using LRC policy increases the chances that the

value is held for long enough to be consumed more than once if needed. Even with a

rare chance that the value is replaced before it is consumed for the last time, it can be

recovered from RF2 or RF3, wherever the register value is currently held. This can be

achieved in a simple way as follows. Every time a source operand for an instruction

that is ready to be issued is being written to RFl, a check is performed if the operand

is already present in RFl. If the operand is not present, the value is written into RFl

from RF2 or RF3.

The above mechanism also helps in recovering from branch mis-predictions as follows.

In a conventional architecture, when a branch mis-prediction occurs, the instructions

that are not yet committed following the mis-predicted branch are squashed from the

pipeline along with the corresponding values written in register file and the logical to

physical register mappings due to those instructions. Subsequently, for instructions that

are issued the source operands are read according to the logical to physical register

mapping performed before the branch instruction. In the proposed architecture, the

corresponding values existing in RF2 and RF3 are squashed when branch mis-prediction

occurs. For new instructions issued, the source operand values are written to RFl from

either RF2 or RF3, wherever they exist. Consider the example shown in Figure 2.6.

Initially, the logical register lr6 is mapped to physical register pr3, and thus is read

ag a source operand for the next instruction. When the branch is predicted to be not

taken and the following instructions are fetched, the logical register lr6 is renamed to

a physical register pr2, different from the earlier mapping. The subsequent dependent

www.manaraa.com

21

Code with logical registers Code with renamed registers
pr3 i— ...
... i— pr3

branch to LOOP ;
lr5 4— lr4 ;

branch to LOOP
pr8 pr9

lr6 A— ... ;
... i— lr6 ;

pr2 i— ...
... 4— pr2

LOOP: ... 4- lr6 ; ... 4— pr3

Figure 2.6 Example code 1.

instructions read from physical register pr2. However, when the branch is realized to be

mis-predicted, the instruction in the correct path after the branch requires the logical

value from lr6 which actually refers to pr3. Thus when the recovery mechanisms are

initiated and the instructions are processed on the correct program path, the instruction

requiring the value in physical register pr3 will find the register value in RF3 bank. This

happens as the register value in pr3 has already been moved from RF2 to RF3 when the

instruction preceding the branch was executed. If the second instruction in the above

shown code does not exist, the mechanism remains the same except that the instruction

at Z/OOf has to obtain the value to RFl from RF2. This happens as the register value

in pr3 is never consumed so far, and hence is still in RF2.

Overall, the mechanism of checking for values in RFl before writing from RF2 or

RF3 ensures the following:

* When the operand is to be consumed the first time, it is always transferred from

RF2 to RFl.

* When the operand is to be consumed the second time and beyond, it is either

already present in RFl, or is always transferred to from RF2 or RF3.

* When a branch mis-prediction occurs, the instructions issued after the pipeline are

squashed, and the subsequent instructions obtain their source operands to RFl

from either RF2 or RF3 depending on the state of the instructions that precede

www.manaraa.com

22

the mis-predicted branch.

2.3.2 Freeing of Registers in RF2 and RF3

A register in RF3 is Breed according to the conditions followed in the case of a

conventional monolithic register file. That is, for a current logical to physical register

mapping, the physical register is freed when a subsequent instruction with same logical

destination commits. The freed register is entered into the pool of free registers at

dispatch stage. In our architecture, when the conditions of freeing a register are satisfied,

the corresponding register in RF3 is freed up and can assume another register from

RF2. When the corresponding entry in RF2 is written to the free register in RF3,

the corresponding register in RF2 is freed and is entered into the pool of free registers

at dispatch stage. The mapping of registers between RF2 and RF3 can be done in a

direct-mapping (one-to-one) fashion.

In a direct-mapping (one-to-one) scheme, the two register banks RF2 and RF3 are

maintained to be of same size, and the fetching of values from RF2 to RF3 is done strictly

in a one-to-one correspondence. Whenever a register in RF3 is freed, the corresponding

entry in RF2 is written to that free register in RF3 and the RF2 register is freed. From

the processor's point of view in a conventional monolithic register file, the logical to

physical register mapping lifetime is between the time physical register is allocated (tO)

and the time when it is freed for next allocation (t4). In the direct-mapping policy,

for applications in which during the lifetime of a logical to physical mapping, if the

latency of quiescent state S3 for a register is much larger compared to the latency in

state S0+S1, most of the time the register in RF2 will be written to RF3 sometime after

it is consumed. In this case, the effective lifetime of a register mapping in the processor's

view is the latency in freeing the register in RF2, which translates to the long latency

of freeing a register from RF3. However, if the latency in state S0+S1 is larger than

that in state S3, a register value might be written from RF2 to RF3 even before it is

consumed. This will not hinder the reading of operands as the value can still be fetched

to RFl from RF3. However, there is a pitfall in this scenario. Consider a case when a

www.manaraa.com

23

value in physical register pr5 is moved from RF2 to RF3 even before it is consumed and

the register pr5 in RF2 is freed for next allocation. Subsequently the register pr5 obtains

another value corresponding to the next logical renaming. A following instruction that

sources the logical operand corresponding to pro in RF3 (former mapping) or the logical

operand corresponding to pr5 in RF2 (later mapping) has to read the value correctly.

To illustrate the scenario more clearly, consider the example shown in Figure 2.7.

Code with logical registers Code with renamed registers
lr6
lr2

pr5
pr9

lr4 4— lr2

... i— lr6

... f- lr4

pr5 f- pr9

... pr5 (in RF3)

... <— pr5 (in RF2)

Figure 2.7 Example code 2.

Sometime in between the first two instructions shown, the value in pr5 is moved

from RF2 to RF3, because previous pr5 in RF3 got freed up. Thus pr5 in RF2 is free

to be allocated and suppose gets mapped to lr4. For the next two instructions shown,

the reading of operands lr6 and lr4 happens to be from pr5 and thus operands have to

be read as per the correct mapping. This scenario can be addressed by the following

mechanism. When the value in pr5 is moved from RF2 to RF3, the register mapping

table in the dispatch stage is updated by setting a flag for the mapping Ir6==pr5, along

with for all those instructions sourcing lr6 and are beyond dispatch stage in the processor

pipeline. Thus any subsequent instructions that source lr6 will be informed accordingly

to read the value from pro in RF3, and instructions that source lr4 will be indicated

to read the value form pro in RF2. At some time later, when pro in RF3 is released

and the value in pr5 in RF2 (corresponding to lr4) moves to RF3, the Sag is set for the

mapping Ir4==pr5. This always ensures the reading of the operands from the correct

register bank.

www.manaraa.com

24

2.3.3 Impact on Bypass Logic

The design of a register file, apart from having an impact on the cycle time and

the memory bandwidth available for the processor, also impacts the complexity of the

bypass logic. A conventional monolithic register file with one cycle latency will have one

level of bypass. However a large monolithic register file to support an 8-issue superscalar

processor (requires around 128 registers with 16 read and 8 write ports) is unlikely to

be implemented with one-cycle latency. Subsequently, a register file with a two-cycle

latency has a negative impact on the processor performance due to increased branch

mis-prediction latency [73]. Also, it requires two levels of bypass logic which incurs a

significant cost. For a register file with two-cycle latency, designing only one level of

bypass logic further degrades the performance [15]. For the proposed architecture, the

complexity of the bypass logic is not affected and is the same as for a register file with

single-cycle latency and a single level of bypass logic. This is due to the fact that the

functional units are always supplied with the operands only from the RFl register bank.

2.3.4 Handling Precise Exceptions

Instructions are fetched and retired in order while they are issued out of order. The

retire mechanism assigns each mapped instruction a slot in a circular in-flight window

(in fetch order). After an instruction starts executing, it can retire whenever all previous

instructions have retired and it is guaranteed to generate no exceptions. The retiring of

an instruction makes the instruction non-speculative guaranteeing that the instruction's

effects will be visible to the programmer. The Alpha 21264 processor [39] implements

a precise exception model using in-order retiring. The programmer does not see the

effects of a younger instruction if an older instruction causes an exception. The retire

mechanism also tracks the internal register usage for all in-flight instructions. Each

entry in the mechanism contains storage indicating the internal register that held the

old contents of the destination register for the corresponding instruction. This (stale)

register can be freed for other use after the instruction retires. After retiring, the old

destination register value cannot possibly be needed. An exception causes all younger

www.manaraa.com

25

instructions in the in-flight window to be squashed. These instructions are removed

from all queues in the system. The register map is backed up to the state before the

last squashed instruction using the saved map state. The map state for each in-flight

instruction is maintained, so it is easily restored. The registers allocated by the squashed

instructions become immediately available.

In the lYibank register file organization, the speculative values can exist in any of

the three register banks. A register map table is maintained with the status of each

of the register in three banks, as against the maintenance of a register map table for a

conventional monolithic register file. When an exception occurs, all younger instructions

in the in-flight window will be squashed. These instructions are removed from all queues

in the system, and the register map state is rolled back to the state before the exception

causing instruction. The corresponding register values allocated to be consumed from

RFl are squashed. The registers in RF2 allocated by the squashed instructions are

immediately available for logical register mapping, and the registers in RF3 holding

the values by squashed instructions are made available for the transfer of values from

corresponding registers in RF2. If registers in RF2 and RF3 with the same entry are

cleared, the register in RF2 is soon allocated with a new mapping at dispatch stage.

When the register in RF2 obtains the value, only then is the entry transferred to the

corresponding free register in RF3. Until then the register in RF3 remains vacant.

2.4 Performance Evaluation

2.4.1 Simulation Methodology

We used Simplescalar-3.0 [9] for the Alpha AXP instruction set to simulate a dynam-

ically scheduled out-of-order issue superscalar processor with the simulation parameters

summarized in Table 3.1, with a few modifications as below. In Simplescalar the instruc-

tion issue queues and the re-order buffer (ROB) constitute one single centralized circular

structure called the Register Update Unit (RUU). The simulator has been modified to

model the issue queues that are smaller than the ROB size. Besides, an Alpha 21264

www.manaraa.com

26

Table 2.2 Configurations for various register file organizations simulated. A
bus from RF2 to RF3 indicates additional one read port for RF2
and one write port for RF3. Access time is measured at 0.1%.

Index Configuration (IW = Issue Width)
read port (rp) , write port(wp), access latency

(JW) = 4
access time (ns)

(mo = s
access time (ns)

Cl: conventional RF = 128 registers, rp = 2*IW , wp = IW 1.0614 1.4873

C2: two-level
organization

RFl = 16 registers, rp = 2*IW , wp = IW, 1 cycle
RF2 = 128 registers, rp = IW , wp = IW, 2 cycles

0.8046
0.9428

0.9791
1.2302

C3: TriBank
organization

RFl = 16 registers, rp = 2*IW , wp = IW, 1 cycle
RF2 = 64 registers, rp = IW , wp = IW, 1 cycle
RF3 = 64 registers, rp = IW, 1 cycle
number of buses from RF2 to RF3 = IW

0.8046
0.8922
0.8687

0.9791
1.1552
1.0844

C4: TriBank
organization

RFl = 16 registers, rp = 2*IW , wp = IW, 1 cycle
RF2 = 128 registers, rp = IW , wp = IW, 2 cycles
RF3 = 128 registers, rp = IW, 2 cycles
number of buses from RF2 to RF3 = IW

0.8046
1.0614
0.9428

0.9791
1.4873
1.2302

processor [39] based architecture is implemented with split integer and Boating-point

physical register files and issue queues for a 4-wide and an 8-wide out-of-order issue

processor. The configurations for four different register file organizations are used for

the analysis as shown in Table 2.2. To focus the analysis on the performance of various

register file organizations, and not introduce an additional bottleneck in instruction pro­

cessing, the architectures are simulated with sizes of 128, 256, and 256 for issue queue,

ROB and LSQ, respectively. The benchmark programs are simulated for 500-1000 mil-

lion instructions depending on the characteristics of each program, and the simulation

was fast-forwarded past the initial warm-up phases.

The configuration Cl is a base processor implementation. In CI the monolithic

register file is implemented as a single cycle register file with one-level bypass logic.

The configuration C2 is implemented in line with the two-level register file design

proposed by Cruz et al [15].

The configuration C3 is used to evaluate the performance of the TriBank regis-

ter file organization with RF2 and RF3 constituting 64 physical registers as against a

conventional monolithic register file with 128 physical registers. This constitutes an

even-handed comparison of the TriBank scheme with Cl and C2 in terms of number of

www.manaraa.com

27

physical registers available for data storage. However, note that the physical register

bandwidth available for logical register mapping in C3 will be half of that available in

case of Cl and C2.

Subsequently, to measure the performance of TriBank scheme with same logical to

physical register mapping bandwidth, we also evaluate the configuration C4. In C2, C3

and C4, the small register bank closer to ALU is implemented as a single cycle one-level

bypass register file. The RF2 and RF3 in C3 are implemented with a single cycle latency,

while RF2 in C2, and RF2 and RF3 in C4 are implemented with a two-cycle latency.

We use SPEC2000 benchmarks, and evaluate both the integer and floating-point,

programs. We used the access time models of CACTI-2.0 [80] at 0.18// technology,

with necessary modifications to generate cycle times for multiported register files, to

evaluate the complexity of proposed register file structures in comparison to the baseline

organization. The use of CACTI-2.0 was greatly expanded, since the tool is made to

analyze caches with few ports. Here we have made use of it for register files (which

typically do not use sense amps like caches) with a larger number of ports. We compute

the access time of the RFl register bank while accounting for associativity.

2.4.2 Results and Analysis

The results obtained with the simulation of various register file configurations in a

4-wide and an 8-wide out-of-order issue superscalar processors are shown in Figures 2.8

to 2.13.

Figures 2.8 and 2.9 show the IPC throughput for various integer and floating-point

Spec2000 programs for 4-wide and 8-wide processors, respectively. The degradation in

IPC for configuration C2 as compared to configuration Cl is in line with the analysis

given by Cruz ef oZ [15]. It is observed, that the TtiBank register file configurations

C3 and C4 perform either similar or better as compared to the base configuration. An

enhancement in IPC by 2% and 3% for a 4-wide processor, and by 2% and 1% for

an 8-wide processor, is seen with configuration C3, for Speclnt and SpecFP programs,

respectively. On the other hand Implementation of configuration C4 enhances IPC by

www.manaraa.com

28

Speclnt2000: 4-wlde Issue [t3C1 QC2 BC3 BC4

2
175

bzip crafty gcc gzip parser vortex Hmean

SpecFP2000:4-wlde Issue

ammp applu lucas mgrid swim Hmean

Figure 2.8 Instructions per cycle (IPC) throughput for various register file
configurations in the 4-wide issue processor.

2% and 12% for a 4-wide processor, and by 3% and 14% for an 8-wide processor for

Speclnt and SpecFP programs, respectively. For certain integer benchmarks like crafty,

gcc, gzip, and parser, C3 is observed to be performing slightly better than C4. This is

due to the larger access cycles for register banks RF2 and RF3 in C4 as compared to

those in C3. Hence, this performance difference can vary in either way depending on

the architecture implementation technology and the other factors that govern the access

time of a register bank.

Figures 2.10 and 2.11 show the relative instruction throughput of the processor per

second, for 4-wide and 8-wide processors, respectively, when the register access time

is factored in. This performance measurement is done assuming that the register file

www.manaraa.com

29

Speclnt2000: 8-wide Issue E3C1 DC2 BC3 HC4 I

2.25

2

1.75

1.5 --

,1.25

— 1
0.75

0.5

0.25

0
bzip crafty gcc gzip parser vortex Hmean

4.5

4

3.5

3

— 2

1.5

1

0,5

0

SpecFP2000: 8-wide issue QC1 DC2 BC3 N04 !

imr i

-
i

.1
>>

>X
O

>-
C

C
| 1

1

i m

ammp applu lucas mgrid swim Hmean

Figure 2.9 Instructions per cycle (IPC) throughput for various register file
configurations in the 8-wide issue processor.

access time determines the cycle time of the processor. An enhancement in instruction

throughput by 34% and 35% for a 4-wide processor, and by 54% and 52% for an 8-wide

processor, is noted with configuration C3 for Speclnt and SpecFP programs, respec­

tively. On the other hand, implementation of configuration C4 enhances the instruction

throughput by 35% and 57% for a 4-wide processor, and by 56% and 96% for an 8-wide

processor.

The advantage gained by the inclusion of RF3 register bank, used to retain the

register values before being freed, is explained as follows. Cruz et al [15] have shown

that a large RF2 (with large access time) and small RFl results in IPC loss though

instruction throughput per second is gained as it increases the pipeline latency. We

www.manaraa.com

30

Specint2000: 4-wide issue |OC1 DC2 E1C3 0C4

2.5 — ——

I

bzip crafty gcc gzip parser vortex Hmean

• C1 DC2 BC3 EC4 SpecFP2D00: 4-wlde Issue

2.5 T

;0.5 -

Hmean swim applu lucas mgrid ammp

Figure 2.10 Relative instruction throughput when register access time is
factored in for various register file configurations in the 4-wide
issue processor.

have shown that splitting their large register bank into RF2 and RF3 provides the same

memory bandwidth for dispatch stage while reducing pipeline latency improving both

IPC and the instruction throughput. This is a significant contribution.

Figures 2.12 and 2.13 illustrate dispatch factor, the percentage of runtime when at

least one free physical register is available for logical register mapping. It is noteworthy

that for architectures provided with large instruction processing structures (issue queues,

ROB, and LSQ), only a very large register file would be able to obtain a dispatch

factor of 100%, i.e., a free physical register is available for mapping all through the run

time. The implementation of configuration C4, wherein a register bank is viewed by

the processor for logical to physical mapping and another register bank is provided to

www.manaraa.com

31

Speclnt2000: 8-wlde Issue |DC1 QC2 BC3 BC4

2.5 -i —

bzip crafty gcc gzip parser vortex Hmean

SpecFP2000: 8-wlde Issue QC1 QC2 QC3 BC4

ammp applu lucas mgrid swim Hmean

Figure 2.11 Relative instruction throughput when register access time is
factored in for various register file configurations in the 8-wide
issue processor.

hold the values during the latter part of their lifetime until they are freed, enhances the

overall performance of the processor. Also, this design performs better, as each of the

two register banks will have a smaller access time as compared to a single large register

bank designed to provide the large memory bandwidth.

2.5 Related Research

An extensive and widespread research has been conducted to bridge the increas­

ing processor-memory performance gap. A lot of research has focused on reducing or

tolerating the large memory access latencies, and innumerable techniques have been de-

www.manaraa.com

32

Speclnt2000: 4-wlde issue

bzip crafty gcc gzip parser vortex Hmean

SpecFP2000: 4-wide issue |BC1 OC2 OC3 BC4

100,

ammp applu lucas mgrid swim Hmean

Figure 2.12 Percentage of run time during which at least one free register
exists for various register file configurations in the 4-wide issue
processor.

veloped in that direction. To review all of them here is an arduous task. Burger et

al [10] assert that aggressive implementations of latency-tolerance techniques in future

processors will expose memory bandwidth as a severe bottleneck. While proposing a

number of solutions, they hypothesize that all system memory will eventually be cou­

pled with the processor on the die, enabling performances much higher than the current

ones. Farkas et al [24] investigated and analyzed the performance trends and design re­

lationships among the register file and the other levels of data memory hierarchy. Chen

and Somani [13] presented a methodology to assess the performance trade-offs of various

architecture techniques based on the equivalence of mean memory delay time.

Various techniques have been proposed to enhance the register access time while

www.manaraa.com

33

Speclnt2000: 8-wide issue QC1 DC2 HC3 SC4

bzip crafty gcc gzip parser vortex Hmean

SpecFP2000: 8-wide issue QC1 DC2 0C3 BC4 !

80

i
™ 60

.2 Q

ammp applu lucas mgrid swim Hmean

Figure 2.13 Percentage of run time during which at least one free register
exists for various register file configurations in the 8-wide issue
processor.

simultaneously striving to provide a large register file. The Alpha 21264 microproces­

sor [39] uses a replicated register file organization to reduce the number of ports, wherein

each copy can be accessed by only a few functional units. Reducing the number of ports

is an effective technique to reduce register access time. Recently, Tseng et al [72] have

examined the designs of such multiple bank with fewer ports to reduce power and area.

However, the access time is still a problem as long as the demand for larger register files

grows.

Cruz et al [15] used a multiple-banked organization for implementing a two-level

register file. The level one (LI) smaller register file maintains a subset of registers

in level two (L2) large register file and accommodates those registers that are active

www.manaraa.com

34

suppliers of values to the functional units. Schemes for transferring the register values

from L2 to LI are proposed. This organization takes advantage of the latency in the

quiescent states SO and SI when the register is waiting to be consumed and the small

active state S2. The register value is fetched from L2 to LI when ready to be consumed.

The organization performs well in reducing the register access time by maintaining a

small LI register file. However, the scheme does not exploit the long latency in quiescent

state S3, as the L2 register file still holds the values until the registers are freed. The L2

register file is used for logical to physical register mapping. Hence, this does not support

the architectures that use aggressive techniques for processing a large number of in-flight

instructions to draw higher ILP, where availability of free physical registers becomes a

bottleneck at the dispatch stage. Further, implementation of a large L2 register file

results in a large latency in access from L2 to LI.

Balasubramonian et al [2] proposed and evaluated two orthogonal designs - two

level and multi-banked register file. In the two-level organization, LI structure is used

for logical to physical register mapping and holds the values until they are consumed.

After the consumption the register is moved to L2 and maintained until it is freed.

This organization exploits the quiescent state S3 where the register is waiting to be

Greed. Such implementation helps in organizing a relatively smaller LI register file as

compared to a conventional single monolithic register file, and hence reduces the register

access time. However, reducing the number of registers in LI which is used for register

mapping increases the possibility of non-availability of free registers for mapping, and

hence results in a more number of stalls at the dispatch stage. The approach in this case

and in [34], with multiple interleaved register banks, results in difficulty in managing

the complexity and the additional latency of the control logic required to handle read

and write bank conflicts and the mapping of register ports to functional units.

Our TriBank register file architecture is motivated from the two architectures in [15]

and [2]. Reducing the register access time even while maintaining a steady availability

of free registers for mapping is essential for higher performance in dynamic superscalar

processors, and our scheme strives to achieve that by taking advantage of the results

www.manaraa.com

35

and conclusions drawn from these designs.

Apart from the above, various other techniques have been proposed in the past for

an effective utilization of register resources. Borch ef oZ [4] have recently proposed the

caching of registers. A software-controlled two-level hierarchical register file organization

was implemented in Cray-1 [62]. Swensen and Patt [68] proposed a hierarchical non-

inclusive register file for a statically scheduled architecture, where register allocation is

performed by the compiler. Wallace ef of [78] proposed a scalable register file architec­

ture, that uses multiple banked register file and maps the result to a physical register

at the write stage in the processor pipeline. Llosa et al [49] proposed a non-consistent

dual register files, where local register instances are stored in the local register file of the

cluster, while register instances used by both clusters are replicated on both clusters.

Yung et al [86] proposed a Register Scoreboard and Cache scheme wherein a subset of

the registers are cached in a fast bank with an LRU replacement policy. For media pro­

cessing, Rixner et al [60] presented a taxonomy of partitioned register file architectures

across three axes - data parallel, instruction-level parallel, and memory hierarchy. The

register deallocation policies have been discussed in detail by Moudgill oZ [52], where

they proposed a mechanism that implements register renaming, dynamic speculation

and precise interrupts.

The HP PA-8000 [43] processor implementation maintains a logical register file that

holds committed values, and the rename registers are maintained in a separate buffer.

To reduce the register file access time, Tremblay et oZ [71] proposed a Fife.

In that, it was shown that the data array portion of the register file can be significantly

reduced by designing the register file in multiple planes, where a plane in 3-D is a

set of registers in 2-D. A cluster based design of execution units and the extension of

storage hierarchy for each cluster, in place of a global register file, is introduced by

Dally [16]. The work investigates the limitations of the dedicated-wires based global

communication in the interconnection structures, and proposes alternative approaches

of clustering, register hierarchy and global networks.

Zyuban and Kogge [87] have developed energy models for multi-ported register files

www.manaraa.com

36

with a variety of architectural parameters, and assert that the centralized register files

would become the dominating power component of next-generation superscalar com­

puters. A 5pZit register architecture was proposed by them as an energy-e&cient

alternative design. Chang et oZ [12] have proposed a conjugate neyiater)iZe scheme to

handle an aggressive instruction scheduling in superscalar processors. Gonzalez et oZ [27]

proposed a virtuoZ regwtera architecture with a strategy to reducing the pressure on regis-

ter file by delaying the allocation of physical registers until instructions complete, instead

of doing it in the decode stage.

2.6 Summary

Microprocessor researchers and designers are continuously facing the uphill task of

bridging the increasing processor-memory performance gap, and also address the need

for a larger memory bandwidth to meet the requirements of future wide-issue superscalar

processors. In the process, the design of an effective register file architecture is becoming

a bottleneck to the enhancement of the performance. The two main goals in designing

an effective register file organization is to provide a small register access time to enable a

faster processor cycle time, and provide a large number of registers to enable dispatching

as many instructions as possible to issue window for extracting higher IL P. To meet these

two goals simultaneously, we developed a TriBank Register file organization, a novel

architecture that exploits the quiescent states in the lifetime of a logical to physical

register mapping.

The TriBank Register file organization consists of three banks of physical registers

with a heterogeneous structure. The Register file organization has been developed based

on the observations that a physical register, in its one lifetime of a logical register map­

ping, first experiences a long quiescent state, then an active state for a short duration,

and finally a quiescent state for a long duration before being freed up. Accordingly, each

register bank is designed to consist a different number of registers and different number

of ports according to the architecture requirements. Implementation of the TriBank

register file organization, as compared to a conventional monolithic register file in an

www.manaraa.com

37

8-wide out-of-order issue superscalar processor enhanced the throughput in instructions

per cycle (IPC) by 3% and 14%. When the register file access time is factored in, the in­

struction throughput is enhanced up to 56% and 96%, for Speclnt2000 and SpecFP2000,

respectively. The significant contribution of our proposed register file architecture is that

it enhances IPC, when earlier work in designing effective register file has resulted in IPC

degradation.

www.manaraa.com

38

3 ADAPTIVE REGISTER FILE

3.1 Introduction

Based on the earlier observations, we propose Adoptive Tkgister /Me Architecture,

a novel architecture for dynamic superscalar processors that strives towards achieving

greater performance by providing a larger memory bandwidth or higher on-chip comput­

ing power, depending on the requirements of the application. The processor is designed

with a conventional register file and execution units. In addition, we design an Adaptive

Register file Computing (ARC) unit, that dynamically switches roles as a register file or

as a computing unit depending on the requirements of the task under execution. When

an application demands higher computing bandwidth, the ARC unit performs the com-

putations in parallel with the other available execution units. On the other hand, when

an application demands larger memory bandwidth, the ARC unit provides an additional

register bandwidth.

In the development of the architecture, we first identify and design a suitable com­

pute intensive function to fit into the ARC unit. This implementation poses various

challenges. The compute intensive function implemented in the ARC unit should be

generic enough to be executed as a part of a wide range of applications, else the re-

sources are under-utilized. Besides, the nature of the function needs to be in such a way

that it can be broken down into multiple independent threads so that the ARC unit can

perform the computations in parallel with the conventional execution units. Besides,

the computation of function in the ARC unit in parallel with the conventional execution

units should give considerable amount, of speedup when compared to the computation of

the function in the processor without the ARC unit. Further, this needs to be achieved

www.manaraa.com

39

with a minimal hardware complexity such that the access time of registers in the ARC

unit is less.

The rest of the chapter is organized as follows. In Section II, we review the related

research. Section III presents the proposed architecture, and the design and implemen­

tation of a compute-intensive function in the ARC unit. Section IV presents the perfor­

mance analysis of a wide-issue superscalar processor supplemented with an ARC unit in

executing the compute-intensive function. Finally, Section V concludes the discussion.

3.2 Related Research

The first known attempts to use the memory elements for computation are that of by

Kautz [38] and Stone [67]. During the past decade, attention has been drawn towards the

significance of designing a reconfigurable coprocessor coupled with the general purpose

processor [18]. Ye et al [85] developed Chimaera, a micro-architecture that integrates

a reconfigurable functional unit (RFU) into the pipeline of a dynamically scheduled

superscalar processor. A sequence of instructions is mapped for a single operation in

the RFU unit, provided it reads up to 9 input registers and generates a single regis­

ter output. The C compiler that automatically generates binaries for RFU operations

is presented. Razdan et al [59] explored ways to incorporate hardware-programmable

resources and described compilation/synthesis system that automatically exploits the

resources to improve the performance of general purpose applications. The Garp archi-

tecture [11] combines reconfigurable hardware with a standard MIPS processor on the

same die to exploit the better features of both. Kim et oZ [41] developed a Aecon/zguroMe

Functional Cache (RFC) based computing architectures, wherein a module of LI data

cache is used as a computing unit to execute a compute-intensive function in multimedia

applications. In this design, a more coarse-grained functions, such as Discrete Cosine

Transform (DCT), Finite Impulse Response (FIR), are mapped into the computing cache

modules.

The register file architecture and its organization has been widely researched to

enhance the memory bandwidth of wide-issue superscalar processors. However, this is

www.manaraa.com

40

the first work, to the best of our knowledge, that proposes an adaptive register file

organization that can enhance the on-chip memory bandwidth or provide higher on-chip

computing bandwidth by acting as a computing unit, as the situation demands.

3.3 Adaptive Register File Architecture

The architecture consists of a main register bank that acts as a conventional register

file that supplies the operand values to the functional units. Besides, the processor is

embedded with an ARC unit, that is designed to act as an additional bank of registers,

or a computing unit that processes matrix multiplication. The architecture with the

processor embedded with an ARC unit is shown in Figure 3.1. The superscalar processor,

with the specifications mentioned in Table 3.1, is used as the base architecture for the

proposed design.

RUU

Functional
Units

ISSUE
Queue

Register rename

DECODE

ARC Unit

(Extra Register bank
or

Matrix mult unit)

Main

Register bank

Figure 3.1 ARC unit placement in the processor pipeline.

When an application under execution demands a large memory bandwidth, the ARC

unit is made to act as a register bank and hence provides an extra memory bandwidth.

In a conventional superscalar processor, the logical destination register for an instruc-

tion fetched is mapped to a tree physical register at the dispatch stage. Subsequent

instructions with the same logical register as their source operand are assigned to read

from the mapped physical register. The logical to physical register mapping remains

active until another instruction with same logical register as its destination enters the

www.manaraa.com

41

Table 3.1 Simplescalar simulation parameters.
Parameter Value

Instruction cache 32KB, 2-way, 32B line
- latency 1 cycle
Data cache 32KB, 4-way, 32B line
- latency 1 cycle
Branch predictor bimodal, 2K table size
—mis — prediction latency 7 cycles
—return address stack size 8
Instruction issue queue size 64 (INT and FP, each)
Loadjstore queue (LSQ) size 256
ReOrder buffer (ROB) size 256
Issue width 4 or 8
Commit width 4 or 8
Functional units
—Integer arithmetic 8
—Integer multiplier 4
—floating point arithmetic 4
—floating point multiplier 4
L2 unified cache 256KB, 4-way, 64B line
—latency 6 cycles
TIB
-D - TIB 512KB, 128 entries

- TIB 256KB. 64 entries
—latency 30 cycles
Memory
—latency first, next 70, 2 cycles
—bus width 8B

www.manaraa.com

42

dispatch stage. The logical destination of that instruction is then mapped to another

free physical register and the process continues. The dispatch stage in the pipeline is

stalled when no free physical register is available. The scheme of logical to physical

register mapping eliminates the write after read (WAR) and write after write (WAW)

data dependencies. The earlier allocated physical register is freed only when the sub­

sequent instruction with same logical destination is committed. This is done to enable

the recovery from branch mis-predictions and handle exceptions precisely. Thus, when

a task demands a large memory bandwidth, ARC unit acting as an extra register bank

provides larger number of physical registers to be mapped to the logical register at the

dispatch stage. This enables larger number of instructions to be dispatched enabling

the processor to view larger instruction window to draw higher instruction level paral­

lelism. On the other hand, when an application demands higher computing bandwidth,

the ARC unit performs the computations in parallel with the other available execution

units.

3.3.1 ARC as a Computing Unit

The compute-intensive function chosen for implementation in the ARC unit should

be generic and a widely used one in most applications. Else, the on-chip hardware

resources allocated for computing such function will be under-utilized. Besides, the

nature of the function needs to be in such a way that it can be broken down into multiple

independent threads so that the ARC unit can perform the computations in parallel with

the conventional execution units. Further, a design and implementation of such function

should provide reasonable speedups as compared when the function is computed in a

general purpose processor. Else, the overall speedup for the application, as per Amdahl's

law, will not be significant enough to justify the overhead of on-chip hardware resources

allocated for the purpose. The time to load the configuration (configuration overhead)

prior to the computations in the ARC unit should be as minimal as possible to avoid

the configuration overhead from becoming a bottleneck to the speedup that can be

achieved. The number of memory elements (registers) used for the design of ARC unit,

www.manaraa.com

43

the arrangement of those registers into various assemblies, the number of read and write

ports, and the time to access a datum from such organization should be optimal to suit

the requirements of a register file. For the above reasons, the design and implementation

of the ARC as a computing unit is a challenging task.

In the current scenario where new and high performance-demanding applications are

fast emerging, researchers and designers continuously experience a demand for signifi­

cant increases in processor performance. Areas such as signal processing and imaging

require enormous computing power, and thus more on-chip computing resources, A dis­

section of the algorithms used in these, and related applications, reveal that many of

the fundamental actions involve matrix operations. Most of these operations are ma­

trix multiplications, which are frequently occurring operations in a wide variety of real

world algorithms. The Discrete Cosine Transform (DCT), the Discrete Fourier Trans­

form (DFT), and Singular Values Decomposition (SVD), used in digital image/signal

processing including compression and beam-forming applications are some of those ap-

plications [58, 45]. The multiplication of two matrices of size NxN each, in a general

purpose processor consumes operations, requiring O(N^) addition and O(N^) in-

teger multiplication operations (considering the elements in the matrix to be integers),

and hence becomes a bottleneck to the performance of the processor. Therefore, larger

number of on-chip processing elements that compute in parallel are required.

Subsequently, we choose the integer matrix multiplication function as a compute-

intensive function to implement in the ARC unit. Consider two NxN matrices A = [A;,]

and B = [By]. The product C = [Cy] of the two matrices is given by

C= A *B (3.1)

such that
AT-1

Cij = AikBkj (3.2)
k=0

To reduce the complexity of the matrix multiplication operations, we design a 3-LUT

based computation, wherein the time to configure the LUTs would be a maximum of

eight clock cycles. The design of the ARC unit is shown in Figure 3.2. It consists of

www.manaraa.com

44

clçar clock

3-bit counter

2:0]

A02A] B[31:0]

B[34:31 35-bit Accumulate,

-V

A [29:27] ^ [26:24]

Mux!

fAR[2:0) D[34:0]

I 35U-LUT

c

f AR[2:0] D[34:0]

V

(AR[2:0] D[34:0]^

J

\ [23:21] *[20:18]
t Subtract

f\[i7:i5) A[U:9:

AR[2:Q] D[34:0]

35x3—LUT

CSA

AR[2:0]

35x3

D[34:0]^

-LUT j

—1 . r™

CSA
v. >

AR[2:0] D[34:0]

35x3-LUT

AR[2:0j D[34K)j

35x3-LUT

64-bit Register

|63:32]

A[5:3] M2:0]

AR[2:0] D[34:0]

35x3—LUT

AR[20] D[34:G]

35x3-LUT

(AR[2:0] D(34:0]

f AR[2:0] D[34:0]^

; J L

CSA CSA

CSA CSA CSA

CSA CSA

CSA

Pipeline registers

CSA

[31:0]

CPA

Figure 3.2 32-bit 8-cycle Reconfigurable Matrix Multiplier. The write en-
able (WE) and clock signals are connected (not shown in figure)
to all the LUTs. The multi-stage addition of partial products
using CSAs is pipelined as shown. The end result is computed
in a carry propagate adder (CPA).

www.manaraa.com

45

eleven 3-LUTs addressed by the 32-bit integer multiplicand (the sign bit is extended

by one bit to make it a 33-bit integer). The addition of the partial products (PPs)

obtained from the LUTs is performed by a multiple stage carry save adders (CSA). The

matrix multiplication operation in the ARC unit consists of two stages - configuration

and computation. For the purpose we introduce two new instructions - ARC-CONF

with one operand A, and ARC-COMP with three operands C, B, and C (desf, source,

source). The instruction (ARC-CONF A) when invoked, performs a write operation for

eight clock cycles controlled by a 3-bit counter. The eight rows in each of the ten right-

most 3-LUTs are loaded with the values of 0, A, 2A, 3A, 4A, 5A, 6A, 7A, respectively,

as addressed by the output from the 3-bit counter. Simultaneously, the eight rows in the

left-most 3-LUT are configured with 0, A, 2A, 3A, —4A, —3A, —2A, —A, respectively,

to facilitate a signed integer multiplication operation. Since we assume a single LUT

cannot be loaded in parallel, we partially load all the LUTs each cycle. Thus all the

LUTs in the ARC unit are configured in parallel and hence the total configuration time

for each element of matrix A is eight clock cycles. When the configuration of the LUTs is

completed, the instruction (ARC-COMP C, B, C) is invoked. The operation consumes

two source operands, wherein the first source operand is used to lookup the contents

of the LUTs, while the second source operand is an intermediate result obtained from

the earlier ARC-COMP operations. The eleven PPs obtained from the current lookup

operation are combined with the two 32-bit parts of the intermediate result (it can be

seen in Figure 3.2 that a proper bit-alignment, is made to perform the addition of the

thirteen partial products, i.e., the lower 32-bit value of the intermediate result is added

to the least significant partial product, while the higher 32-bit value of the intermediate

result is added to the most significant partial product). Subsequently, the addition

of the thirteen PPs is performed in five stages of addition using CSAs and the result

obtained thereafter is stored in the designated destination operand. The addition of PPs

using CSAs and a carry propagate adder (CPA) is pipelined as shown in the Figure 3.2.

The first stage constitutes the lookup operation and first level of CSA computation.

Subsequently, four levels of CSA computations are placed in two stages (two CSA levels

www.manaraa.com

46

in each stage). Due to the higher computation latency in a CPA as compared to a CSA,

one CPA computation is placed in a single stage. The pseudo code for a multiplication

of two NxN matrices and a sequence of instructions generated for the multiplication of

two 2x2 matrices in the ARC unit is shown in Figure 3.3.

Algorithm 1. Matrix multiplication in ARC

for i=0 to (N-l)
for j—0 to (N-l)
ARC-CONF

for k=0 to (N-l)
ARC-COMP C*, Q&

for N=2. the sequence of operations for execution in ARC:
Initialize Cqq — Cio Cqi C~i\ — 0•
ARC-CONF Aoo
ARC-COMP Coo, Boo, Coo
ARC-COMP Coi, Box, Cm
ARC-CONF Aoi
ARC-COMP Coo, Bio, Coo
ARC-COMP Coi, B n , Coi
ARC-CONF Au,
ARC-COMP Cio, Boo, Cio
ARC-COMP Cn, Boi, Cn
ARC-CONF An
ARC-COMP Cio, Bio, Cio
ARC-COMP Cu, Bu, Cn

Figure 3.3 Matrix multiplication in a ARC unit (shown excluding
load/store and branch instructions).

Alternatively, the lookup operation can be performed using 4-LUTs. In that case,

the addition of 10 PPs (eight from lookup and two from earlier intermediate result) still

requires five stages of CSAs and hence results in same computation latency (in fact,

the lookup time for a 4-LUT is slightly higher than that for the 3-LUT). However, the

total number of memory elements (registers) placed in the ARC unit would be 128, as

www.manaraa.com

47

compared to 88 in the 3-LUT based design. Thus, the 4-LUT based design results in a

larger area overhead and with a slightly higher computation latency, and hence we prefer

a 3-LUT based design for the implementation. Similarly, the lookup operations can be

performed using 5-LUTs wherein the addition of nine PPs (seven from lookup and two

from earlier intermediate result) can be performed in a four-stage CSAs. However, the

lookup time for the 5-LUT is much larger and offsets the advantage of reduced stages

in addition. Further, the total number of memory elements required for such operation

is 224, which results in a very large area overhead on the chip.

B(332]
ar clock A[32:01

B[31:01

34-bit Accumulate 2-bu counte B 33:2

(<
I 35-bit Add ^ 35-bit Subtract

•U29:2?l \R6:241 A[2 Zlj NZG WI

A.Ril'01 D[34;Q] j
35x2-LUT JD|34:0|1 \

j ARil.Ql D[34;G ARU'.O} 0(34.0]

35x2-LUT)D(34:0)

ARLO D[34:uj ARU'.O} D134-.Q)

35x2-LUT

0134:01
35x2-LUT JD[34:Q)

I 35x2-LUT _J
[35x2-LUT jD{34:Ofi

i 35x2-LUT j

i 35x2-LUT JD[34:Q1) D(34:0
(35x2-LUT j [35x2-LUT L 3Sx2-LUT j i 35x2-LtJi j

'AR[1:0] D[34:0]l\ (AR[i :0j 3(34:0} ARftO) D[34:0n AR[I:0j D[34:01 ARfhO] D[34:0}

2-LUT ' 33x2-LUT D(34:0) 35x2-LUT JD{34:0] 35x2-LUT JD[34 35x2-LUT ID[34:0)

i35x2-LtJT 35x2-LUT

To Carry Save Adders 1 o Carry Save Adders to Carry Save Adders

-y ~ i '—Y n L yy

To Carry Save Adders

Figure 3.4 32-bit 4-cycle Reconûgurable Matrix Multiplier. The write en-
able (WE) and clock signals are connected (not shown in figure)
to all the LUTs. The pipelined addition of partial products using
CSAs is performed as shown in Figure 3.2.

The implementation of the ARC unit can further be modified to reduce the config-

uration time to 4 and 2 clock cycles, in line with the design of a self configuring binary

muMpker proposed by Wojko and ElGindy [82]. The lookup operation with a configu­

ration time of 4 cycles is shown in Figure 3.4. A 3-LUT is divided into two segments

www.manaraa.com

48

B[33:2]

B[34:3]

35-bit Add

i 35-bit Add 35-bit Subtract

D[34:0]

35x1-LUT

AR

D[34:0] 1 I AR

i Decode j Decode

35-bit Subtract

AR D[34:D]

35xl-LUT

AR D[34:0]

35x1—LUT

33-bit Accumulate,

To Cany Save Adders To Carry Save Adders .

Figure 3.5 32-bit 2-cycle Reconfigurable Matrix Multiplier (partially
shown). The write enable (WE) and clock signals are connected
(not shown in figure) to all the LUTs. The pipelined addition of
partial products using CSAs is performed as shown in Figure 3.2.

www.manaraa.com

49

and the two segments of each 3-LUT are loaded with the respective contents in parallel.

This is achieved with an additional 35-bit adder that adds a value of 4A to each of the

consecutive outputs from the 34-bit accumulate. Thus it takes 4 clock cycles to load

the values of 0, A, 2A, and 3A into the rows in first segment, and simultaneously write

the values of 4A, 5A, 6A, and 7A into the rows of second segment. Among the three

bits to perform the lookup in a 3-LUT, the two least significant bits (LSBs) are used

for address lookup while the most significant bit (MSB) acts as a select signal for the

multiplexer to choose either of the outputs from the two segments. Note that this is

similar to a design where 16 2-LUTs are used for the lookup operation (with a total of

64 memory elements). However, in the 2-LUT implementation, the addition of 18 PPs

(16 from lookup and 2 from earlier intermediate result) requires six stages of CSAs and

hence results in a larger computation latency.

The lookup operation with a configuration time of 2 cycles is performed with the

further segmentation of the 3-LUT, however with a larger area overhead due to additional

adders and decoders required. The partial implementation of the design is shown in

Figure 3.5. The total on-chip area consumed by the ARC unit, designed according to

the above described three different configuration schemes and implemented at 0.18/1

technology, is shown in Table 3.2. The three designs have been implemented in the

Verilog language and the hardware synthesis to measure the area is performed using the

standard design analyzer tools from Synopsys [35]. To make an evenhanded comparison

of our design with the architectures already implementing a large register file (with same

number of registers as the combination of main register bank and the ARC unit), we

measure the overhead of the area only due to additional logic (CSAs, Add/Sub units

and routing) required to perform matrix multiplication computation. The corresponding

results are shown in the third column of the table. The table shows that the area

overhead we incur, due to the added logic for matrix multiplication, is significantly less.

This is due to the fact that the LUTs are consuming more than 80% of the ARC unit

area, and this agrees with the current processor designs which often devote a largest

fraction (up to 80%) of on-chip transistors to caches.

www.manaraa.com

50

Table 3.2 On-chip area for ARC design using 3-LUTs, implemented at
0.18// technology. Area overhead is ARC unit area excluding
LUTs (registers).
Con fig. time ARC area Area overhead

(square microns) (square microns)
2 c%/cZea 233017 42419
4 cycles 199509 32063
8 cycZes 178992 26224

3.3.2 ARC as an Additional Register Bank

A lookup-table (LUT) is a segment of SRAM, e.g. a 3-LUT is an SRAM logic with

a bitline width of eight cells. The width of the wordline can be designed according to

the functional requirements. A wordline in the LUT is read or written by selecting the

wordline using a decoder logic, similar to the implementation of read and write accesses

in on-chip memories. When the ARC unit acts a register bank, it can be considered to be

consisting of eleven register sub-banks (corresponding to eleven 3-LUTs), each sub-bank

comprising of eight registers. Correspondingly, each sub-bank consists of one read and

one write ports. The design of one such register sub-bank is shown in Figure 3.6. The

flag sets the ARC unit into the register file mode or the computing mode. According to

the Bag setting, the address and data values appropriate for the current operation are

selected. The access time for a register, i.e., to read a value from one memory bank, for

each of the designs is shown in Table 3.3. The access time values have been computed

at 0.18/4 technology, using a register file access time model derived from CACTI [80, 63].

It can be observed that for an implementation with maximum possible configuration

cycle time (for a 3-LUT based design it is 8 cycles, for a 4-LUT based design it is 16

cycles, for a 5-LUT based design it is 32 cycles), the register access time is slightly less

than a corresponding design with reduced configuration cycle time. This is mainly due

to the absence of a decoder and multiplexing logic to select one of the outputs from the

segments of an LUT.

www.manaraa.com

51

lookup address for matrix mult.

register address for read/write

config for matrix operations

from register write logic

To LI register file Read port

ARC
flag

AR

3-LUT

2:0] elk WE D[34:0T

Registers

As input to CSA

Figure 3.6 A register sub-bank in the ARC unit.

Table 3.3 Register access time in the ARC unit at 0.18/i technology.
ARC config

time
Register access time (ns) ARC config

time
3-6&T 4-6E/T 5-6&T

2 cycles 0.4484 0.4975 0.5466
4 cycles 0.4524 0.5017 0.5510
8 cycles 0.3628 0.5098 0.5594

16 cycles - 0.3831 0.5756
32 cycies - - 0.4028

www.manaraa.com

52

3.4 Performance Analysis

Table 3.4 Various processor configurations simulated.

Index Configuration Number of registers
available

Computing bandwidth
available

CI Base processor
without ARC unit

256 registers
(access time 1 cycle)

8 Integer ALU and
4 Integer Multipliers

C2 Base processor with ARC
unit as register bank

256+88 registers
(access time 2 cycles)

same as base
processor

C3 Base processor with ARC
unit as computing unit

256 registers
(access time 2 cycles)

ARC unit. 8 Integer ALU, and
4 Integer Multipliers

We used Simplescalar-3.0 [9] to simulate a dynamically scheduled out-of-order issue

superscalar processor with the simulation parameters summarized in Table 3.1. The

configurations for three different processor organizations used for the analysis purposes

are as shown in Table 3.4. Configuration CI is a base processor with out the ARC

unit. Configurations C2 and C3 are the base processor with an embedded ARC unit.

The performance of the processor with ARC unit acting as an additional register bank is

analyzed in the configuration C2. Similarly, performance of the processor with ARC unit

acting as a matrix multiplication unit is analyzed in the configuration C3. For the CI

and C2 configurations, matrix multiplication operation is performed in a conventional

superscalar processor with varied register file sizes and register access times as shown in

Table 3.4.

The register access time for C2 configuration is taken to be one cycle more as com-

pared to the base processor, due to the larger register file. The pipelining of the register

file is not considered for analysis purposes here, though the multiple-cycled pipelined

register file designs have been proposed in the recent past. To perform the matrix mul-

tiplication in the processor with C3 configuration, the entire computation is broken into

multiple threads. The benchmark program is developed such that close to two-thirds

www.manaraa.com

53

of the number of threads are used to generate instructions to be executed in the con­

ventional functional units. The rest of the computation is used to generate instructions

to be executed in the ARC unit. During the computation in the ARC unit, the time

to configure the LUTs for each element of A is taken to be 4 cycles. A slightly higher

speedup in computation can be obtained if a 2 cycle configuration time is used, while a

slightly lesser speedup is obtained if a 8 cycle configuration is used. In C3 configuration,

even when the register file size is same as that of the base processor, the access of each

register involves decoding and thus includes the ARC unit also. Hence, in this case the

register access time is taken to be 2 cycles.

For a comparative evaluation between the configurations C2 and C3, where C2 has

larger memory bandwidth while C3 has higher computing bandwidth, the multiplication

of matrices of size 256x256 is also performed according to the blocking algorithm [26, 83].

Blocking is used to achieve locality in the on-chip memory bandwidth available. To

perform matrix multiplication by blocking, we divided the 256x256 matrix into four

128x128 blocks.

The speedups obtained by computing the matrix multiplication product in the su­

perscalar processor with an embedded ARC unit as compared to the computation in a

base processor are shown in Figures 3.7, 3.8, and 3.9. For each matrix size, the total

number of cycles taken to execute the function in the processors with configurations

C2 and C3 is normalized with the total cycles for execution in the base processor (con-

figuration CI). In the case of matrix multiplication by blocking, the execution times

obtained for configurations Cl, C2 and C3 are normalized with the execution time ob-

tained with matrix multiplication in a conventional way in processor configuration CI.

As seen in Figure 3.8, for multiplication of matrices with smaller sizes, the C2 and C3

configurations perform similarly and better than the base configuration.

As the matrix size is increased to 128x128, the demand for higher computing power

takes precedence and hence the C3 configuration performs better. However, as the

matrix size is further increases to 256x256, the demand for larger memory bandwidth is

more than the demand for the higher computing power. Thus, in this case though C3

www.manaraa.com

54

Matrix multiplication In 4-wide superscalar processor with ARC unit 1C1 QC2 0C3

1.2

1.15

1.1

o.
V)

1.05

1 i

0.95 -

0.9 f L . 11
% •

j

g
. .]

1 g 6
g

r
8x8 16x16 32x32 64x64

Matrix size

128x128 256x256 256x256
blocking

Figure 3.7 Matrix multiplication in 4-wide out-of-order superscalar proces­
sor without ARC unit, and with ARC unit

performs better than CI, processor configuration C2 performs even better. In the case

of multiplication of matrices by blocking, the configuration C3 performs better than C2

and C2 performs better than CI. This is due to the fact that, blocking helps in utilizing

the memory bandwidth efficiently, and thus the demand for computing bandwidth is

more than the demand for the memory bandwidth.

From the above results, and especially analyzing the performance of various configu­

rations of a 8-wide superscalar processor in executing multiplication of matrices of sizes

128x128, and 256x256 with and without blocking, it can be concluded that applications

depending on their nature, demand either higher computing capacity or larger memory

bandwidth or both. Hence, providing memory and computing resources on-chip that

are fixed in nature is expensive and does not enable an efficient utilization of silicon real

estate on-chip. Instead, it is more beneficial to design a portion of on-chip resources to

be reconfigurable, so that it can be used either as a memory element or a computing

unit, as the situation demands.

www.manaraa.com

55

Matrix multiplication In 8-wlde superscalar processor with ARC unit

8x8 16x16 32x32 64x64 128x128 256x256 256x256
blocking

Matrix size

Figure 3.8 Matrix multiplication in 8-wide out-of-order superscalar proces­
sor without ARC unit, and with ARC unit

3.5 Summary and Future Work

Applications that demand either higher on-chip computing power or larger on-chip

memory bandwidth are continuously emerging. Processor researchers and designers are

continuously facing the uphill task of simultaneously meeting these two demands by vari­

ous applications. In this chapter, we proposed Adaptive Register file architecture, a novel

architecture to provide a feasible solution and address the above problems concurrently.

The Adaptive Register file Computing (ARC) unit provides a higher on-chip computing

capacity by executing a compute-intensive function, and provides a larger register file

resources to meet the memory bandwidth requirements. Results show a performance

increase of up to 12%, when an out-of-order 8-wide issue superscalar processor is supple­

mented with the ARC unit to process matrix multiplication, a compute-intensive core

function in most multimedia applications. Similarly, a 17% performance enhancement

is seen when the matrix multiplication is performed in an out-of-order 16-wide issue

www.manaraa.com

56

Matrix multiplication In 16-wide superscalar processor with ARC unit
1C1 DC2 BC3

1.2

1.15 -j

1.1 4

8x8

1.05 -

16x16

"1"

a

32x32 64x64

Matrix size

128x128 256x256

98

256x256
blocking

Figure 3.9 Matrix multiplication in 16-wide out-of-order superscalar pro­
cessor without ARC unit, and with ARC unit

www.manaraa.com

57

superscalar processor supplemented with the ARC unit. The chapter also discussed the

microarchitecture level details for the implementation of the ARC unit.

Further investigations involve the study of performance of proposed architecture in

executing various multimedia and signal processing applications that have the matrix

multiplication as the core compute-intensive function. The study also requires the de­

velopment of a compiler that automatically extracts the matrix multiplication function

in an application and generates a suitable sequence of instructions to perform the com­

putation in the ARC unit. A mechanism, with a suitable support at the compiler and

the microarchitecture level, needs to be devised to support the dynamic allocation of

the ARC resources for computation and register file purposes.

www.manaraa.com

58

4 LOW-POWER HIGH-PERFORMANCE

ARCHITECTURES

It is important to ensure that all the hardware resources available on the chip be

utilized to the maximum extent possible for wide range of applications. For example,

current processor designs often devote a largest fraction (up to 80%) of on-chip tran­

sistors to caches. However, many workloads, like the media processor applications, do

not fully utilize the large cache resources due to the streaming nature and the lack of

temporal locality for the data. On the contrary, these multimedia applications require

more computing resources due to the fact that they primarily are compute intensive

functions.

From the above observations, an idea of a different kind of computing machine -

Reconfigurable Functional Cache (RFC) based Adaptive Balanced Computing (ABC)

architecture, has evolved. RFC based architecture uses a dynamic configuration of a

part of on-chip cache memory to convert it into a specialized computing unit that can

carry out an independent computation. An RFC module operates as a conventional

cache memory module or a specialized computing unit [41]. The first version of the

RFC based ABC microprocessor [42] has proved the utility of embedding RFCs in the

superscalar processor, by accelerating the media applications with speedups in the range

of 1.04x to 5.Ox. Since cache access is in the critical timing path of the processor, it is

important to address the impact of making the cache reconfigurable on the cache access

time. In this chapter, we show that even with the area overhead the access time of

RFC is same as the conventional cache at larger cache associativities due to the parallel

decoding mechanism employed.

Further, due to the increased concern of power dissipation in the system, current mi­

www.manaraa.com

59

croprocessors are required to deliver higher performance even while keeping the levels of

power dissipation at minimum. Earlier, power dissipation was an issue only for designers

of embedded and portable systems due to the necessity of prolonging the battery life.

Now, it has also become a primary concern for the design of high-end microprocessors

due to the cost, heat dissipation and complexity involved in the chip packaging. The area

overhead caused due to the added routing structure in the cache, to make it a computing

element, will result in higher power dissipation in RFC as compared to a conventional

cache. However, the reduced number of cache accesses and lesser utilization of other 011-

chip resources, due to a significant reduction in the execution time of the application,

will result in significant savings in energy consumption. In this chapter, we demonstrate

by using the simulation results obtained from executing various media benchmarks on

the ABC processor that there is savings in the overall energy consumption.

The rest of the chapter is organized as follows. In Section II. the organization of

ABC microprocessor is discussed, with the implementation details of RFC modules at

the microarchitecture level. The section also addresses the issues related to the impact on

the cache access time and energy dissipation. In Section III, we provide a brief overview

of the architecture simulator used to implement the ABC architecture. Section IV

presents the performance of the ABC processor as compared to a conventional processor

for various media benchmarks. In Section V, we discuss the proof for our claim of

significant savings in the power consumption, along with the details of power models

used. Finally, Section VI concludes the discussion.

4.1 ABC Microprocessor

In the following sections, we provide the details of the first version of the RFC based

ABC architecture to lay the foundation for the further discussion and analysis regarding

the power and performance of the processor.

The ABC architecture is built by incorporating a multiple-way set associative data

cache memory in a RISC superscalar microprocessor. Some modules in the set associative

data cache are built as RFCs. One possible configuration of an ABC microprocessor

www.manaraa.com

60

with a 4-way RFC is shown in Figure 4.1. Each RFC module can be configured to a

specialized computing function or can be used as a normal data cache memory module.

The RFC module is constructed as a two dimensional array of multibit output Lookup

Tables (LUTs). Each LUT acts as a basic memory element in the memory mode while

acting as a basic processing element (PE) in the computing mode.

Main Processor
(RISC Superscalar)

Data Cache (LI)

Inst Cache

(LI)

RFC
3

RFC
2

RFC
1

RFC
0

t

lnstr./Data Cache

External

Off-chip

Memory

(SDRAM.

RDRAM)

Figure 4.1 ABC: RISC superscalar processor coupled with a 4-way RFC.

4.1.1 RFC Microarchitecture

The components in a conventional cache structure constitute of decoders, data and

tag arrays, sense amplifiers (in both the data and tag arrays), comparators, multiplexer

drivers, and output drivers. It can be noted that, to convert a conventional cache into

an RFC, it is necessary to modify only the organization of data array with addition of

the routing structure to facilitate the computation of a function. The organization of

the rest of the cache components remains unchanged. Hence, in this section we discuss

in detail, only the microarchitecture of the data array in the RFC.

The basic cache parameters are C (cache size in bytes), B (block size in bytes), A

www.manaraa.com

61

(associativity), and S (number of sets = C/(B*A)). To alleviate the problem of longer-

than-necessary access time, Wad a et al. proposed the division of the array into subarrays,

and presented four parameters, and for data array and for tag

array [75]. The parameter N*,; indicates the number of times the data array is split

with vertical cut lines (creating more, but shorter wordlines). Nm indicates the number

of times data array is split with horizontal cut lines (causing shorter bitlines). The total

number of subarrays in the data array of the cache is x N#/. Similarly, x

is the number of subarrays in the tag array. Along with these parameters, Jouppi et

al. used two other organization parameters, and which indicate the number

of sets mapped to a single wordline in a data array and tag array, respectively [80, 63].

Thus, for the organization of two-dimensional array of LUTs to build the RFC, the

parameters and N# are equivalent to the number of rows of LUTs (= 5"/^^^)

and the number of columns of LUTs (= 8 * B * A/Niu##*), respectively. is the

number of lines in one LUT, 16 for 4-LUT, while Niutbits is the width of one line in an

LUT. The structure of the data array in an RFC module is shown in Figure 4.2. The

organization of the wordlines, bitlines and the parallel decoding structure in the RFC

module had been extensively discussed in [41]. In this chapter, we concentrate more on

the impact of such organization on the cache access time and energy dissipation, the

two critical parameters in a processor design.

In a 4-way RFC, consider a situation in which one module is active as a computing

unit while the other three modules are serving as data cache. During the read and write

accesses, the data and tag are read from the sets of all the modules. The bitlines and

wordlines are active in the computing module too. However, the set that is selected in the

computing module will behave different from the other modules, according to the index

decoding performed for set selection. It can be observed from Figure 4.2 that lower four

bits of index is replaced with the data word from routing structure, in the module acting

as a computing unit. Hence the set selected is different from the sets selected in the other

modules. The data read through the wordlines and bitlines in the computing module are

not sent to the CPU by blocking at tag comparison level. This can be done by forcing

www.manaraa.com

62

a. (same to all the LUTs)
, 4bits (LSB) I

(i)-4)bi its (MSP

(n~4)bits

Enable signal
for memory mpde

4bii

Routing Structure for Computation

ri

4biis

hkK
ti*

h 4b its

Routing Stru< tun

4bii

H 4bits

Routing Strut tort

for Cor

tbit

iputàtion

for Cot iputktion

!#:

4bits

m
I#

s*
4b its

local bit line

global bit line

Figure 4.2 Data array structure in one module of A-way set associative
RFC. The data array in other modules is similarly arranged

www.manaraa.com

63

the result of the tag comparison to a miss, with the help of RFC flag, for that particular

module. Therefore, even when three modules are active as data cache and the fourth

module is active for computation, data accesses are processed by all the four modules.

Thus, to estimate the power consumption in RFC due to cache memory accesses, all

the four modules are accounted for contributing towards the energy dissipation. The

RFC configuration is loaded into the module at the beginning of activation using the

conventional load instructions. These load instructions will be a miss in the cache and

hence a cache load operation is performed for each of these instructions. Such loads

are also processed by all the four modules, in terms of decoding, tag comparison and

other necessary operations. However, configuration data is loaded into only one module

using the cache replacement strategy. Again, to estimate the power consumption in

RFC due to the configuration load instructions, all the four modules are accounted for

contributing towards the energy dissipation. A detailed discussion on the configuration

and computation modes of the RFC is given in the following sections.

4.1.2 Computing Structure in RFC Modules

The routing structure for computation laid out between two rows of LUTs, as shown

in Figure 4.2, facilitates the computation of a function by allowing Sow of execution

data from one row of processing elements (PEs) to the other. Multiply-and-Accumulator

(MAC) and Distributed Arithmetic (DA), the two primitive functions in DSP and the

multimedia applications, are implemented in RFC modules. Discrete Cosine Trans­

form (DCT) is the most efBcient technique in image encoding and compression schemes.

Convolution, a DSP algorithm, is another common requirement in signal and image

processing for pattern recognition, edge detection, etc. Using these two algorithms to

map to RFC modules, we can implement the most common multimedia applications

like mpegdecode, mpegencode, cjpeg from UCLA mediabench [48] and FIR, IIR from

TMS320C6000 benchmarks [36].

The number of pipeline stages for the convolution in an RFC depends on the size of

www.manaraa.com

64

the cache. A conventional convolution algorithm (FIR) is shown in Equation 4.1,

L-1
= m = 0,1,2,...., oo (4.1)

fc=0

where, L is the number of taps and h(k) is the constant coefficient. Similarly, the

DCT/IDCT function, which is the most effective transform technique for image and

video processing is shown in Equations 4.2 and 4.3.

where, A is a square image (or a square portion of a large image), C is a constant

coefficient matrix with the same dimensionality as A, and CT is a transpose of C. Con-

sequently, Y is the transformation matrix.

The one stage of convolution, consisting of a multiplier and an adder, is shown in

Figure 4.3. The first rows of LUTs implement an 8-bit constant coefficient multiplier, as

a two 4x8 partial products, and the second row implements the addition of the partial

products. The next two rows implement a 24-bit adder to accumulate up to 256 taps

of FIR filter. In one module (way) of a cache with 256 sets, we can implement four

such stages. Similarly, the implementation of two PEs of DCT/IDCT in four rows of

LUTs in an RFC module is shown in Figure 4.4. In both the functions, the carry select

adder scheme is used to implement a faster addition operation, thus minimizing the

propagation delay for the entire operation. Thus, the routing structure for computation

consists of only the registers, bus lines and 2-to-l multiplexers to enable the data Sow

between rows of LUTs. To address in detail various issues related to the performance of

RFC and its impact on the microprocessor in this chapter, we avoid the discussion on

the details of the LUT-based computational implementation of the above functions. An

extensive discussion on the implementation of the functions in LUT based RFC is given

in [42].

y = (4.2)

A = (4.3)

www.manaraa.com

65

A[23..Q]
M[7..4] \ 24

2*-bit Rtfgjvter

mm
Y[11..0]

X[11..0]

[11.10] XC9..8

Y[3..0

R[15..14] R[13..12j R[n..iOi K[9..8] R[7..6] R5..4
RF15..0]

A_NEWf23..0J

24-bïlHcgtMei:

Figure 4.3 One tap of FIR filter implemented in four rows of LUTs in an
RFC module with 8 columns of LUTs. The blank LUTs do
not participate in computation mode, but function normally in
memory mode.

www.manaraa.com

66

16!
. t_lA . „

J -"il K, jj'.'ri

Y[15..0] •
X[15..0] , 16

..14] |Y[15..14] Y[9..8] X[5..4] Y[5..4] X[1 .0] Y[1..0]

»i• • 'm 11

Gout Gin

R[15..14]

r1 T T 1 1 ' ^ n
R[15..0]

R[13..12] R[9..8] R[5..4] R[1..0]

mum
16-Bit Register

Y[15..0]

X[15..0]

• ••
X[15..14] Y[15..14]

* -bit adiiu ? i>n j(ide «id»

On Or fm i.'n
= i -.(i -v -

R[15..14]
R[15..0]

R[13..12]

lû X 16

X[9..B1 Y[9..8J X[5..4 0 IY11..01

•..in 1 in . nj

R 1..0] R[5..4] RL9..8]

Figure 4.4 Two successive processing elements (PEs) for DCT/IDCT, im­
plemented in four rows of LUTs in an RFC module with 8
columns of LUTs. The blank LUTs do not participate in com­
putation mode, but function normally in memory mode.

www.manaraa.com

67

4.1.3 Access Time and Energy Dissipation

The propagation delay in various components in a cache contribute towards the

cache access time, while the switching activity in them for each cache access contributes

towards dynamic power consumption in the cache. These components can be identified

mainly as decoder, wordlines (in both data and tag arrays), bitlines (in both data and tag

arrays), sense amplifiers (in both data and tag arrays), comparators, multiplexer drivers,

and output drivers (data output and valid signal output). The organizational parameters

discussed in Section 4.1.1 influence access time and energy dissipation, as variation in

each of these parameters results in the requirement of varying number of components.

For example, increasing or A^ increases the number of sense amplifiers required,

while increasing results in the requirement of more wordline drivers. To measure

access time and energy dissipation in RFC as compared to a conventional cache, we have

used CACTI models [80, 63], with necessary modifications to account for the overhead

caused due to the routing structure for computation. The CACTI models estimate cache

access time and energy dissipation per access for each set of values for the parameters

and while varying other organizational parameters like C, A, and B. However, for

the RFC, parameters TV#, (= #/%#*%.,) and (= 8*_B*A/Afh,#%,) vary according to

the variation in each of the organizational parameters C, A, and B. It is to be observed

that, as the parameters are varied across a spectrum of cache sizes and associativity,

there would be a steady increase in the number of decoders in the data array. We

incorporated these necessary features in the model for the estimation of access time and

energy dissipation in RFC. The values for data array parameters and N# in

the conventional cache are chosen as 1, 2, and 4, respectively. The values for tag array

parameters A^,,, and Af#, are chosen as 2,1, and 2, respectively. These are the best

values obtained from the simulation results in [63] for optimum access time and energy

dissipation in the cache. Figure 4.5 shows the estimation of access time, in nanoseconds,

for base cache and RFC, with varying cache organizations. The estimation of energy

dissipation per cache access, in nano Joules, is shown in Figure 4.6. In each of these

comparisons, an RFC with implementation of the convolution algorithm, is considered.

www.manaraa.com

68

Similar results are obtained for an RFC with the DCT/IDCT implementation. In a

set-associative RFC, when one of the modules is active as a computing unit, the other

(A-l) modules will be in memory mode. For this reason, direct-mapped cache is not

considered for the implementation of RFC. Hence, the results in Figures 4.5 and 4.6 are

shown for 2- to 32-way set-associative caches with varying sizes.

Access time in conventional cache and RFC ! —«—base cache A RFC cache |

•g
e

10

<

! 2 I
f i l l

4 [8 [16 ; 32 j 2 4 | 8 | 16 | 32 2 4 | 8 | 16 j 32 2 4 I a I 16 I 32 2
! i I :

4 | 8 | 16 | 32 j 2
! I I |

4 | 8 j 16 ! 32

8KB ; 16KB 32KB 64KB 128KB j 256KB |

Figure 4.5 Access time, at 0.8 micron CMOS technology, in conventional
cache and the RFC for Convolution algorithm implementation,
x-axis indicates the cache associativity from 2- to 32-way, for
each cache size in KB.

When cache size is increased, access time grows due to the increased delay in decoder,

bitline, wordline, and multiplexer driver. Increase in associativity of the cache increases

delay in the tag path constituting of tag comparators, tag bitline, tag wordlines etc., and

subsequently increases the cache access time. In RFC, routing structure between the

rows of LUTs causes an additional delay, apart from the components mentioned above.

Since, we have assumed a line size of 32B for all cache sizes, number of sets for caches with

lower sizes (8KB, 16KB, 32KB) is smaller and hence number of rows of LUTs is small.

Thus the delay caused by routing structure is insignificant. At lower associativities

for caches with larger sizes (64KB, 128KB, 256KB), number of rows of LUTs is higher

resulting in a larger amount of routing structure in one module of the cache. Delay caused

www.manaraa.com

69

Energy dissipation in conventional cache and RFC ;—#—base cache —&—• RFC cache

! 2 4 i 6 j 16 ! 32 2
I ! ! !

4 j 8 | 16 | 32 j 2
j j

4 | 8 | 16] 32 2 4 | 8 f 16 j 32 2 4 j 8 j 16 j 32 : 2 4 ! 8 ; 16 I 32 {

8KB 16KB | 32KB 64KB 128KB ' 256KB |

Figure 4.6 Energy dissipation, at 0.8 micron CMOS technology, in conven-
tional cache and the RFC for Convolution algorithm implemen-
tation. x-axis indicates the cache associativity from 2- to 32-way,
for each cache size in KB.

by the routing structure is larger, and hence larger access time for RFC as compared

to conventional cache. As the associativity increases, number of pipeline stages for

computation is less and hence smaller delay. Thus at higher associativities, access time

in RFC is closer to access time in the conventional cache.

In a conventional cache, a major portion of energy dissipated by the set associative

configurations is in bitlines and sense amplifiers. Aa the associativity increases, require-

ment of the number of sense amps grows and subsequently power consumption also

grows. Besides, increase in the number of subarrays at higher values of and TV#,

results in a larger number of decoders and sense amplifiers. This leads to higher amount

of energy dissipation in the RFC. Apart from that, the routing structure contributes

towards an additional energy dissipation. At smaller cache sizes, difference in energy

dissipation in RFC and a conventional cache is smaller due to the small overhead from

routing structure and the number of sub arrays in both the models of cache being close.

We assume that the size of an LUT remains constant (in all of our implementations we

used a 4-LUT as a basic PE). Therefore, as the cache size increases, number of data

www.manaraa.com

70

subarrays increases and hence higher power consumption. However in reality, for higher

cache sizes, we do not have to convert complete cache into RFC. Only some modules can

be used for computational purposes, and the remaining modules can still be designed as

conventional cache modules. This will reduce area overhead and consequently overhead

in the power dissipation.

From the Figures 4.5 and 4.6, it is clear that the values for the access time and

the energy dissipation in an RFC are comparable to those for the conventional cache,

at various cache sizes and organizations. The main reason for the deflated overhead

for both these parameters in the RFC is due to the fact that only the organization of

the data array is modified to build an RFC, while organization is unchanged for the

remaining components like tag array, comparators, multiplexer drivers and the output

drivers.

4.2 Architecture Simulator for ABC Implementation

The mechanism of computation in RFC and the functioning of the ABC micropro­

cessor are discussed in detail in [42]. Here, we present a brief overview of the operation of

the ABC architecture. For the simulation purposes, the ABC processor is implemented

by appropriate modifications of Simplescalar tool set [9]. The source code of the sim-

plescalar tool set is modified to incorporate the RFC design and the microarchitecture

is modified accordingly to enable the communication between the main processor and

the RFC.

4.2.1 Instructions to Utilize RFC

To prevent the memory address space from becoming non-cacheable, not more than

one cache modules is configured as computing units at a time. There are three steps

involved to perform a computation on RFC - configuration, loading input, and storing

output. All these steps require only load/store class of instructions. To perform these

operations, new instructions, named r/c load/store instructions, are added. The format

of the r/c instructions is the same as the conventional load/store instructions except for

www.manaraa.com

71

the target register Geld. The target register Geld is used for different purposes as shown

in Figure 4.7. Three types of instructions, rfcjoad-conf, r fcJoadJn, rf castore^out,

31 26 25 21 20 19 18 16 15

New opcode Rs FID CMD Offest

FID (function identifier) : 4 different functions to be implemented into RFCs
CMD (command) : type of operations

000 - start configuration and set the special state register and other required flags

001 - load configuration data (from reserved address space)

010 - end of loading configuration data and set to execution mode

011 - terminate an RFC use for computation and return back to the cache mode

100 - set flags and load input data to be processed for the computation

101 - load 2nd set of input data from memory hierarchy if applicable

110 - store output data to memory hierarchy

111 - set for partial reconfiguration process at the end of current step

RFC instructions for load-word based on the CMD

000 rfcJw.conf-Start F ..class special-flags
001 rfcJw-Conf /«* offset($r)
010 rfcJw-Conf-end /id offset($r)
Oil rfc-terminate f i d
100 rfcJw-inl f i d offset($r)
101 rfcJw in2 /id offset ($r)
110 rfc-sw .out f i d offset(Sr)
111 rfc_partial_set /id offset ($r)

Figure 4.7 rfc instructions for loading and storing "word" type of data

and initialize/terminate instructions are added. The detailed format of the new class

is described in Figure 4.7. It is assumed that at most four RFC modules are available

in the architecture. Individual instruction operations are explained briefly later in Sec-

tion 5.1.2. Note that the FID field chooses the module that will be configured for a

specific function. Word-data type r/c instructions are used for the description purpose.

www.manaraa.com

72

For different types of data (for example, half-word or byte, etc.), the same instruction

format can be used. Also, note that r/cJw_con/ue»d and r/c_por#oZ_aet performs a

loading operation in addition to setting the mode as well. The r/cJwucon/_s(art in­

struction is used for a special setting in a RFC, such as use of multiple input buffers (i.e.

input and intermediate data) and a hierarchical function identification of RFCs, if more

than four RFC modules are implemented (e.g. function class followed by sub-FID).

4.2.1.1 Mechanism for the Computation in RFC

In out-of-order issue in a superscalar processor, any instruction which does not have

a dependency with preceding instructions can be issued and executed at any time if

the required resources are available. In addition, in a speculative execution, the next

instruction stream in a code sequence can be executed speculatively. The out-of-order

issue and execution may also happen among r/c instructions because there is no explicit

dependency between r /c instructions. However, the rfcJwJn(l or 2) and rfcsw-out

instructions must not be issued and executed until the RFC has been configured. A

speculative execution mechanism may issue the r/c instructions in any order. To avoid

this type of exception, a special RFC state register is included. In the register, two bits

are reserved for each RFC module. The two-bit RFC state information is organized as

follows.

» 00 : NON-RFC/END-RFC - normal cache mode;

• 01 : CONF - configuration mode for RFC

. 10 : CONF_DONE/START-RFC_EXE - end of CONF

* 11 : RFC_EXE - execution mode

The state transition is controlled by the r/c instructions as depicted in Figure 4.8.

All the r/c instructions must access the RFC state register according to the FID field

in the microcode and then check the current state with its CMD field. If it is an allowed

state, the r/c instructions can be issued. Otherwise, the r/c instructions are stalled

until the corresponding state is resolved.

www.manaraa.com

73

rfc lw_conf

ric_l\v_conf_end rfc_lw_conf_start

rfc_Iw_in rfc_terminate

rfc_lw_in
rfc sw out

Figure 4.8 State transition for the RFC cache.

4.2.1.2 Configuration

The configuration of RFC from a cache module simply implies loading all the con­

tents of LUTs required to construct a computing unit. A normal cache read with a

small modification directs specific data into the designated cache line. The required

configuration data for RFCs resides in a reserved memory (address) space in main mem-

orv. The configuration is loaded into main memory when the system boots up. The

r/cJiu_con/.start instruction sets the corresponding RFC state register. The subse-

quent rfclwxonf instructions load the configuration lines to the specific RFC without

changing the RFC state.

Since the configuration data is held in main memory, the data accesses would be

cache misses if the same configuration had not been loaded previously. This cache miss

will replace the current clean/dirty lines in a write-back cache. Thus, separate cache

flushing is not required. A simple modification of cache replacement mechanism, such as

LRU (Least Recently Used), is required to replace the data in the specific cache module

(RFC) with the loaded configuration data in a set-associative cache organization. The

modified LRU scheme, which is set by r/cJw^%m/_atort, replaces lines in the RFC only

if r/cJw_con/ accesses in CCWF mode. The configuration data in RFC should not

be modified by other load/store instructions except the r/c_2wjcon/ instructions if the

www.manaraa.com

74

RFC state is not '00'. An additional operation in the modified LRU mechanism protects

the configuration data by removing the lines in RFC from the replacement line list in

LRU when conventional load/store instructions access the cache. The new LRU scheme

consists of two operations, one for rfclw-conf to replace data in the specific RFC and

the other for other load/store instructions (including rfcJwJnl/2) to access the rest, of

cache memory. Using this modification, the set associativity of cache memory is changed

dynamically depending upon the use of RFC. A write operation to RFC is prevented by

disabling the write enable in the RFC during the execution mode.

4.2.1.3 Execution Stage

The new instructions are decoded in dispatch stage according to their specification

described in Section 5.1.1. The rfcJwJnl/2 instruction, which loads input data to an

RFC computing unit, is decoupled from LSQ (Load Store Queue) and queued into an

input buffer (IBUF) dedicated to each RFC. The decoupled IBUF provides data in-order

to the RFC computing unit. In addition, the rfc load/store instructions process the

input/output data independently in the separate buffers. Otherwise, these instructions

pass/receive data to/from RFC serially in one buffer. The effective address for the

rfc.lwJnl/2 instruction is calculated using the existing datapath and passed to the

corresponding instruction in IBUF, not in LSQ. The details of mechanism to support

out-of-order update (load) of input data in IBUF are discussed extensively in [42]. If no

slot in IBUF is available, the following instructions including conventional instructions

fetched from memory are stalled until IBUF is again available. Otherwise, it may require

a complex mechanism for a decoupled fetch queue between r/c load instructions and

other instructions. By queuing the r/cJw_ml/2 instructions into IBUF in-order, the

input data to be processed is provided to RFC in a correct order. This is like a reorder

buffer mechanism for input data of the RFC unit to remove the impact of out-of-order

execution. The input data from memory to the IBUF can be supplied out-of-order as in

the conventional LSQ. Note that instead of providing IBUF with the data in write-back

stage, the data may be directly loaded into the matched address slot in IBUF from data

www.manaraa.com

75

buses.

A whole function in an application may not be mapped to an RFC as a computing

unit at one time. For instance, in an FIR filter, if the number of taps for the filter­

ing coefficients is larger than the number of physical taps implemented in an RFC, we

configure the Erst set of taps in the RFC and then reconfigure it partially for the next

set of coefficients at run-time. This can be achieved using a cache write operation in

rfc-dwjconf. The rfcjpartialset instruction shown in Section 5.1.1 sets the RFC state

register and all the required flags as rfcJw..conf start does. This mechanism protects

the current configuration data to be retained in the RFC for the partial reconfiguration

by setting the RFC state from RFC-EXE to CONF mode directly. The following

rfcJ.iD.conf instructions reconfigure the designated RFC as done for the initial con-

figuration. In this case, an input data stream may be processed by a fixed number of

taps and partial results are stored. In the second iteration, input and partial results are

loaded (using rfcJwJnl and rfcdwjin'2, respectively) and processed together. Thus,

we provide two IBUFs. The computation in RFC is processed when both data elements

are available.

After a computation is completed in the RFC, the output data is queued into an

output buffer (OBUF). The OBUF is a simple FIFO register file since the queued data

is already in-order. The output data in OBUF is stored into memory by the r/c store

instructions. The rf exterminate instruction sets the RFC state into the non-RFC mode

after finishing an entire computation. This setting should be done in commit stage to

avoid mis-execution of pending r/c instructions. If the same computation with the

current configuration is performed in the near future, the RFC state (AFC_E%E)

is not changed. The rfcJwJnl/2 instructions do not affect any state when a mis-

prediction/speculation or an exception occurs because the r/cJw_ml/2 instructions do

not modify the precise state in microarchitecture. All the repair to be done in this case

is to flush the instructions in IBUF as done in a conventional LSQ.

www.manaraa.com

76

4.3 Performance of ABC Processor

The performance of the ABC architecture is assessed based on the number of cycles

it takes to execute each application as compared to a superscalar processor with a con­

ventional cache. The performance of the ABC processor has been discussed extensively

in [42] with varying cache parameters like cache size, line size and associativity. A set of

those results, for a 32KB 4-way with a line size of 32B, for various media applications are

shown in Table 4.1. It is to be observed that, when one of the RFC modules is active as a

computing unit, the LI data cache size available for the application execution is reduced

to (A-l) modules. Hence, there is scope for an increase in the cache miss rate. For this

reason, [42] gives an elaborate discussion on the increment in the cache miss rate and

increased accesses to L2 unified cache, and the subsequent impact on the performance

of the processor.

Table 4.1 Comparative performance results of ABC processor and base pro­
cessor for various benchmarks, for a 32KB 4-way cache with a line
size of 32B

MPEG2 decoding MPEG2 encoding CJPEG

Parameter Base proc w/o RFC ABC With RFC Base proc w/o RFC ABC With RFC Base proc w/o RFC ABC with RFC

instructions executed 3379270939 765200387 1836846152 1557343290 388146976 349668078

instructions committed 2917901442 697388230 1133806586 990419802 313470898 274783704

branches committed 358154116 117537382 193040786 179287391 45744790 46040223

L1 t-cache accesses 3516411442 789989376 1987089036 1730431526 400090831 361615414

L1 D-cache accesses 556436572 243376327 396899127 375379770 88372011 88376692

L2 cache accesses 3105242 2110077 6368541 7464894 1097261 1237426

load instructions executed 529245151 170407053 526670201 483560722 83909135 83848718

store instructions executed 125747787 108910724 26082798 19361466 26250519 26556238
total cycles for application 1112897758 282349760 748791538 659330287 138079889 130595007

total cycles for core

function (DCT/IDCT)

860150575 31364247 51600132 2096111 11561504 4410289

load insts. To configure RFC 0 256 0 2162689 0 256
load insts. for data exec InRFC 0 16588800 0 1081344 0 2359296

FIR 16 taps FIR 256 taps IIR
Parameter Base proc w/o RFC ABC With RFC Base proc w/o RFC ABC With RFC Base proc w/o RFC ABC with RFC

instructions executed 22003487 14051176 139968277 17876122 18090987 14743584
instructions committed 18745647 11217583 136710448 15041687 14734154 11911083
branches committed 3212525 2672596 11076840 2922558 2819926 2706289
L1 l-cache accesses 21732330 13715206 139696753 17540633 17819750 14406960

L1 D-cache accesses 5633334 3666332 37090638 6618032 4538873 3685913
L2 cache accesses 5932 29054 5965 170652 7762 20957

load instructions executed 6026190 3094478 49279950 5063079 4454012 3192988
store instructions executed 1940578 1416164 9804898 2399924 1531309 1416623
total cycles for application 7007648 4962539 38465368 7924806 6087211 5136357

total cycles for core

function (Convolution)

2408919 360901 33866654 3323161 1453998 501776

load insts. To configure RFC 0 352 0 2272 0 512
load insts. for data exec inRFC 0 49152 0 1048576 0 32768

www.manaraa.com

77

In Figure 4.9, each simulation result data set, for a particular cache structure, consists

of four values: (a) the total application execution time in the general purpose superscalar

processor without the RFC, (b) portion of time taken for computing the core function in

the GPP, (c) total application execution time in the ABC processor integrated with the

RFC, and (d) the portion of time taken to execute core function in the RFC. Bach of

these values are normalized to the total number of cycles for executing the application in

the conventional superscalar processor. The performance improvement is obtained from

the normalized total cycles for the execution of the overall function and also the core

function. For example, the execution time for the M PEG 2 decode application is only

25.37% of the time if the application is executed on a conventional superscalar processor.

This large speed-up is due to the significant acceleration of the DCT/IDCT function in

the RFC. The specialized computing units configured in the RFCs improve the perfor­

mance of each core function significantly. The most important factors for speed-up are

the reduced number of instructions and the acceleration of computation with a special-

ized unit. Hence, it is observed that the overall speed-up is largely proportional to the

fraction of the core function, in the entire application, that is mapped to the RFC.

The MPEG2 encode application has a smaller fraction (6.89% as shown in Figure 4.9)

of the core function to be mapped to RFC. Besides, we observe that the number of calls

for the core function in the application is far less as compared to that in the case of

MPEG2 decode application. Therefore, for execution of MPEG2 encode application in

the ABC processor, we use the dynamic configuration scheme, where the RFC module

is configured only when call for the core function occurs and the module is moved

back to the memory mode when the computational requirement is fulfilled. Thus the

RFC module haa to be continually configured in MPEG2 encode application, while the

module is configured just once in the case of MPEG2 decoding at the starting of the

execution of the application. Hence, the number of load instructions to configure the

RFC module is higher for the execution of MPEG2 encode application. However, the

configuration overhead in this case is much smaller than the product of time for loading

one configuration and the number of calls for the configuration. This is due to the fact

www.manaraa.com

78

that the configuration loading is just a single cache write operation for each line. Thus

only the first time the configuration needs to be loaded completely. For the subsequent

configurations, only those cache blocks that are corrupted are written, thus minimizing

the configuration overhead.

IO total cycles for application(base proc) B cycles for core function(base proc) 0 total cycles for application(ABC proc) B cycles for core function(ABC proc)

120 -

100 -

t
I » .

a

I

60 -

40 •

20 -

k'

g. i fi-,
MPEG2 decoding MPEG2 encoding CJPEG FIR 16 taps FIR 256 taps IIR

Figure 4.9 Performance of ABC processor vs. base processor for a 32KB
4-way cache with a line size of 32B

4.4 Power Estimation in ABC Processor

In superscalar microprocessors, higher performance is achieved at the cost of higher

power consumption since:

- The instruction issue width is increased for higher performance, but employs com­

plex logic. Further, that leads to increased hardware complexity for resolving the

instruction dependencies.

- The energy and complexity of the functional units is independent of the issue width.

However, with a speculative execution, the functional unit energy per committed

www.manaraa.com

79

instruction still grows with the issue width because of the increasing portion of

instructions that are fetched from mispredicted paths and discarded later.

Higher energy dissipation requires more expensive packaging and cooling technology,

increases cost, and decreases reliability of products in all segments of computing market

from portable systems to high-end servers. Moreover, higher energy dissipation signif-

icantly reduces battery life and diminishes the utility of portable systems. Conserved

power consumption is important for various reasons.

- In order to keep transistors within their operating temperature range, heat gener-

ated has to be dissipated from the source in a cost-effective manner. Power density

may soon limit performance growth due to thermal dissipation constraints.

- Power must be delivered to a very large scale integration (VLSI) component at a

prescribed voltage and with sufficient amperage for the component to run. Very

precise voltage regulator/transformer controls current supplies that can vary within

nanoseconds. As the current increases, the cost and complexity of the voltage

regulators/transformers increase as well.

- Batteries are designed to support a certain watt-hours. The higher the power, the

shorter the time that a battery can operate.

Until recently, power efficiency was a concern only in battery powered systems like

notebooks and cell phones. Currently, increased microprocessor complexity and fre-

quency have caused power consumption to grow to the level where power has become

a first-order issue. Each market segment has its own power requirements and limits,

making power limitation a factor in any new microarchitecture.

The two sources of power consumption in microarchitectures are:

- Dynamic power consumption:

* It is the power dissipation whenever a transistor or wire changes voltage (i.e.,

value).

www.manaraa.com

80

* Dynamic power dissipation is proportional to the product of the number of

devices changing value, the speed of these changes (i.e., operating frequency)

and the square of the voltage change.

* Reducing power dissipation is possible by reducing each of these factors.

- Leakage power dissipation:

* Power is dissipated even when devices do not change values due to the im-

perfect nature of semiconductor based transistors. This is the leakage power.

* In existing designs, leakage power is relatively small. However, as we move

toward smaller transistors and lower voltages, leakage power increases rapidly.

* Power-aware efforts in this area aim at cutting off power to devices while they

are not being used. This is a challenging task as powering on and off devices

requires some time and, hence, can severely impact performance.

* For example, it is possible to reduce leakage power in caches by deactivating

parts of the cache with a negligible impact on hit rate and performance.

The earlier sections discussed the high performance of the ABC processor for various

multimedia applications. From Table 4.1, it can be observed that, when the core function

is executed in the RFC, the total number of instructions executed, the number of load

and store instructions and the number of accesses to LI data and instruction caches have

reduced. In this section, we show that the effect of power dissipation overhead per access

in the RFC, is offset by the reduced number of accesses to the cache. We further show

that the reduced utilization of other on-chip resources, due to a significant reduction in

the execution time of the application, will result in savings in energy consumption.

4.4.1 Power Estimation Models

In CMOS microprocessors, dynamic power consumption is the main source of power

consumption and clearly dominates the leakage power dissipation. Therefore, we take the

www.manaraa.com

81

approach of estimating the dynamic power consumption in the ABC processor as com-

pared to a conventional microprocessor based on the simulation results. Architectural

power simulators like Wattch [7] measure the utilization of various processor compo­

nents and during the simulation, feed these utilization numbers into a high-level power

model to estimate the energy behavior of the processor. Using a similar approach, we

estimate the component power breakdowns based on the utilization numbers we gather

from the simulation of various multimedia benchmarks, for both superscalar processor

with a conventional cache and the ABC processor. For this purpose, we use two mod-

els as discussed in the following sections. The heuristics developed for the estimation

of power dissipation in each component are in line with the methodology proposed by

Martonosi et al. [7, 37].

4.4.1.1 Alpha Processor Model

The reported component breakdown of power consumption in the Alpha 21264 pro-

cessor is shown in Table 4.2. The second column (ffrac) indicates the power consumed

by the component as a fraction of the total power in the processor. The third column

indicates the heuristic for the utilization factor of the component .

Table 4.2 Listing of heuristic power estimations for Alpha processor model
Resource Pfrac Utilization factor

clock 26.31 total cycles for application
resultbus 2.63 instructions executed

ALU 15.79 instructions executed
L2 cache 2.66 L2 cache accesses

L1 D-cache 12.79 L1 D-cache accesses
L1 I-cache 17.68 L1 1-cache accesses

regfile 2.63 inst. committed -branches comm.
+ instruction decoded

Isq 6.63 load instrs. + store instrs.
window 8.26 instructions executed
bpred 2.31 branches committed

rename 2,31 instructions decoded

4.4.1.2 Pentium-Pro Processor Model

The reported component breakdown of power consumption in the Pentium-Pro pro­

cessor is shown in Table 4.3. The second column (P/rac) indicates the power consumed

www.manaraa.com

82

by the component as a fraction of the total power in the processor. The third column

indicates the heuristic for the utilization factor of the component.

Table 4.3 Listing of heuristic power estimations for Pentium-Pro processor
model

Resource Pfrac Utilization factor
Clock 10.5 Total cycles for application

Instruction fetch 18.7 L1 I-cache access
Register Alias Table 4.9 instructions decoded
Reservation Station 8.9 instructions executed

Reorder buffer 11.9 instruction committed
ALU 22.6 instructions executed

L1 Data Cache 11.5 L1 D-cache accesses
L2 Cache 2.5 L2 cache accesses

Memory Order Buffer 4.7 load instructions +
store instructions

Branch Target Buffer 3.8 branches committed

4.4.2 Power Estimation in RFC

With the heuristics for utilization factors available, as discussed earlier, the compo­

nent breakdown of total power dissipation for all the components except the LI data

cache can be obtained. The estimation of power dissipation in the RFC is more involved

since while one module of the RFC is acting as a computing unit, the remaining (A-l)

modules are serving the memory accesses.

For the estimation of power consumption in RFC under the above mentioned situa­

tion, the observations are:

- In a 4-way RFC, even when three modules are active as data cache and the fourth

module is active for computation, data cache accesses are processed by all the

four modules. Hence, power is dissipated by all the modules for each data cache

access. During the data cache access, data from the computing module is avoided

from being sent to CPU by blocking the tag comparison. This can be done by

forcing the result of tag comparison to a miss, with the help of RFC gag, for that

particular module. Thus, to estimate the power consumption in RFC due to cache

memory accesses, all A modules are accounted for contributing towards the energy

dissipation.

www.manaraa.com

83

- The configuration is loaded into RFC module, treating the instructions to load

configuration as normal load instructions that will undergo a miss in the cache.

Hence, a cache write operation is performed for each of these instructions. Thus,

cache writes are processed by all the four modules, in terms of decoding, tag com­

parison and other necessary operations. The stream of configuration data is loaded

into one module only using the cache replacement strategy. Therefore, again to es-

timate the power consumption in RFC due to the configuration load instructions,

all A modules are accounted for contributing towards energy dissipation.

- The computation in RFC module is LUT baaed and lookup cost is proportional

to the number of data items processed. Power consumption in RFC module that

is active in computing is thus proportional to the number of data items loaded

into the input buffer. Also, the data is being processed in all the taps of the

computing unit simultaneously. Thus, at any instant of time, data being processed

simultaneously in all the taps is equivalent to one memory access.

- FYom the above observations, it can be seen that computation in one module of

RFC is performed simultaneously when the RFC is serving the cache memory

accesses. However, for a simple and worst-case estimation of the power dissipation

in RFC, we assume that the cache accesses and computation in one module of

RFC are separated in time.

The heuristic for power estimation in the RFC of the ABC processor is as given

below:

PoW&T •^Oyi^'Tbasecache * Power factor ^

i M2 +confio a i j +((1/A)*(l/Ntaps) * datante \
I Ml /

where,

Power/wan- = ratio of per access power consumption in RFC to that in conven-

tional cache. This is obtained as in Figure 4.6.

www.manaraa.com

84

M2 = LI Data cache accesses in ABC processor with RFC

cotifioad — Number of load instructions to configure one RFC module

Ntap, = Number of computing stages in one RFC module

dataRFc — number of data elements executed in RFC module

Ml = LI Data cache accesses in base processor without RFC

A = Associativity of the cache.

4.4.3 Results and Analysis

The component power break down of the power consumption in the ABC processor

for both the models for various multimedia applications is shown in Figures 4.10, 4.11,

4.12, 4.13, and 4.14. The power dissipation is estimated for the simulation data shown in

Table 4.1, which is obtained for a 32KB 4-way set associative cache with a line size of 32

bytes. It is observed that when the computation intensive core function is mapped and

computed in RFC number of instructions executed is reduced. This results in reduced

utilization of on-chip resources causing the reduction in overall power consumption. This,

along with the reduced number of accesses to data cache, offsets the power dissipation

overhead in the RFC. Similar component power break down are obtained for other media

applications. Figure 4.15 shows the total power consumed for each of the application

under Alpha and Pentium-Pro processor models. The values shown in the figures are

normalized to the total power consumed in a conventional superscalar processor for each

of the application. The results show that up to 60% reduction in power consumption is

achieved for MPEG decoding application, and a reduction in the range of 10% to 20%

for various other multimedia applications. The significant savings in the power for the

execution of MPEG2 decode application in the ABC processor is due to relatively larger

fraction of the application that is mapped to the RFC.

It can be observed that overall power consumption in the processor with RFC is ei­

ther smaller or almost same as compared to that in the base processor. This is achieved

www.manaraa.com

85

Mpeg2decode-Alpha model 1 Base proc w/o RFC • ABC with RFC

20 •

^ P

n
ill Illill

1 FL i £UD= XL j
clock resultbus ALU L2 cache L1 D-eache L1 l-eache regfile Isq window bpred rename

Mpeg2decode -Pentium Pro model
25

Base proc w/o RFC 0 ABC with RFC

Clock instruction Register Alias Reservation Reorder buffer
fetch Table Station

ALU L1 Data L2 Cache Memory Order Branch Target
Cache Buffer Buffer

Figure 4.10 Component power utilization in ABC processor vs. base pro­
cessor for MPEG2 decode application.

www.manaraa.com

86

Mpeg2encode -Alpha model 8 Base proc w/o RFC 0 ABC with RFC

clock resultbus ALU L2 cache L1 D-cache L1 !-cache regflle window bp red rename

Mpeg2encode -Pentium Pro model I Base proc w/o RFC E ABC with RFC

n n iïi
Clock instruction Register Alias Reservation Reorder buffer ALU

fetch Table Station
L1 Data L2 Cache Memory Order Branch Target
Cache Buffer Buffer

Figure 4.11 Component power utilization in ABC processor vs. base pro­
cessor for MPEG2 encode application.

www.manaraa.com

87

FIR16tapS -Alpha model [BBase proc w/o RFC rn ABC with RFC

30 -
!

clock resultbus ALU L2 cache L1 D-cache L1 l-eache regfile Isq window bpred rename

FIR16taps -Pentium Pro model [a Base proc w/o RFC a ABC with RFC

25 - • • —• - —— — —• --- ' — ---- - — -

Clock Instruction Register Alias Reservation Reorder buffer ALU L1 Data L2 Cache Memory Order Branch Target
fetch Table Station Cache Buffer Buffer

Figure 4.12 Component power utilization in ABC processor vs. base pro­
cessor for FIR application.

www.manaraa.com

88

Cjpeg -alpha model

30

m Base proc w/o RFC 13 ABC with RFC

clock resuitbus ALJ L2 cache L1 D-eache L1 (-cache regfite Isq window bpred rename

Cjpeg -Pentium Pro model 0 Base proc w/o RFC 0 ABC with RFC

n
irai

Instruction Register Alias Reservation Reorder buffer ALU
fetch Table Station

L1 Data L2 Cache Memory Order Branch Target
Cache Buffer Buffer

Figure 4.13 Component power utilization in ABC processor vs. base pro­
cessor for cjpeg application.

www.manaraa.com

89

IIR -alpha model I Base proc w/o RFC E3 ABC with RFC

IIR -Pentium Pro model
25

QJtU
clock resultbus ALU L2 cache L1 D-eache L1 l-cache regfile Isq window bpred rename

S Base proc w/o RFC EABC with RFC

20 ->~

10

Clock instruction Register Alias Reservation Reorder buffer ALU L1 Data L2 Cache Memory Order Branch Target
fetch Table Station Cache Buffer Buffer

Figure 4.14 Component power utilization in ABC processor vs. base pro­
cessor for IIR application.

www.manaraa.com

90

despite a larger amount of power dissipation per access in RFC as compared to base

cache. This occurs due to the reduced power dissipation in all the other on-chip compo­

nents of the processor due to their reduced activity. And, the most important fact is that

the reduction in overall power consumption is achieved along with a higher performance

in executing the media applications.

10 base proc w/o RFC * ABC with RFC | || Total Power-Pentium Pro model |lbase proc w/o RFC O ABC with RFC~| Total Power-Alpha model

mpeg2decode mpeg2encode mpeg2decode mpeg2encode

Figure 4.15 Total power utilization in ABC processor vs. base processor
using (a) Alpha processor model (b) Pentium-Pro model.

4.5 Summary

The size of on-chip cache memory has been consistently increasing to keep up with

the pace of enhancement in the processor technology and this trend is likely to continue

even in deep-sub-micron technology. However, some applications may not be utilizing

the full cache memory capacity and the performance improvement due to the increase

of cache capacity may not be significant. In this chapter, we have given an overview

of the development of Adaptive Balanced Computing (ABC) microarchitecture using a

Reconfigurable Functional Cache (RFC). The RFC accelerates the computations using

a specialized computing unit with minimal modification and overhead in time, power

and area domains in the cache and microarchitecture.

www.manaraa.com

91

The chapter discusses the high performance of the ABC processor in computing

various multimedia applications. Besides, keeping in pace with the current requirement

of power-aware architectures, it has been shown that the ABC processor delivers higher

computing capacity while providing with significant savings in the energy dissipation

in the various on-chip components of the processor. It can be argued that for the

computations other than the media applications discussed in this chapter, and that will

not be accelerated using the RFC, the RFC will still dissipate larger amount of power.

However, as discussed earlier, it is not necessary to convert all the cache modules into

computing units. Since the on-chip cache size is continuously increasing, it is possible

to design some part of the cache as RFC modules and reserve them for computational

purposes. They can be used as memory modules when an application demands larger

cache capacity.

www.manaraa.com

92

5 TIMING CONFIGURATION SWITCH

To build an ABC microprocessor, we integrate the reconfigurable functional caches

(RFC) into a RISC superscalar microprocessor. A cache memory is partitioned into

sub-cache blocks to implement the RFC in the existing cache structure. Some of these

cache blocks can be configured as specialized computing units. This chapter explores two

methodologies for the configuration of the RFC module. In the first scheme, the RFC

is configured with the core function at the beginning of the multimedia application and

this would result in a reduced cache capacity for the entire application. In the second

scheme, the RFC is configured with the core function only when the core computation

is necessary and the RFC module is released when not required to be used as a normal

cache memory by the other computations within the multimedia application. With

various cache mapping organizations, we study the overall impact on the performance of

selected benchmarks, such as multimedia and DSP applications. The results prove that

performance of each scheme varies depending on the structure of the application used.

These issues are addressed as a part of our analysis on the ABC architecture.

The rest of the chapter is organized as follows. In Section II, we describe the first

version of the ABC microprocessor. Section III presents an overview of the preliminary

results obtained to support the case of building an ABC microprocessor. In Section

IV, we propose various schemes to configure the core function into the RFC. Section V

presents a comprehensive discussion on the impact of various parameters, related to the

microarchitecture as well as the application, on the overall execution time. In Section

VI, we discuss the results obtained from applying various RFC configuration schemes.

Section VII presents the layout for the future work and finally, Section VIII concludes

the discussion.

www.manaraa.com

93

5.1 RFC Integrated Microarchitecture

The ABC architecture is built by incorporating a multiple-way set associative data

cache memory in a RISC superscalar microprocessor. Each module in the set associative

data cache is built as an RFC. One possible configuration of a ABC microprocessor with

a 4-way RFC is shown in Figure 4.1. Each RFC module can be configured to a specialized

computing function or can be used as a normal data cache memory module. The RFC

module is constructed with multibit output Lookup Tables (LUTs). Two possible cache

organizations with the address mapping including RFCs are shown in Figure 5.1. The

organization of a reconfigurable cache module (RFC) had been extensively discussed

in [41].

4-way set associative cache

wayO wayl way2

(a)

way3

address
mapping/

RFC_3 RFC_3 y

\
f size of

I module

A . .
size of
module

4-way set associative cache address

wayO wayl way2 way3

RFC J}

RFC_1

RFC_2

!
RPC_3|

fb)

size of
module

size of
module

A size of
y module

Figure 5.1 Reconfigurable Functional Cache (RFC) organizations and ad­
dress mapping with (a) 4 cache modules (b) 16 cache modules.

To prevent the memory address space from becoming non-cacheable, not all of the

www.manaraa.com

94

cache modules are configured as computing units at the same time, for the cache or-

ganization shown in Figure 5.1(a). RFCs can be implemented with a minimal cache

modification in this organization. In addition, one module can be easily excluded from

the cache operation because the cache partition is already provided in a multiple-way

set associative cache memory. The cache memory capacity is reduced when an RFC

converts into a computing unit. This results in a full dynamic associativity of cache

memory when configuring. For example, if one out of four cache modules is configured

to a computing unit, only 3-way blocks in all sets are left to map the address space in

lower-level memory..

A further partition of cache memory within a module (way) is shown in Figure 5.1(b).

To partition a large cache memory, we apply a similar address decoding mechanism in

each cache module for an RFC. The decoder for each module is divided further to make

a hierarchical decoding in higher address bits. This provides sixteen smaller-sized cache

modules which can be built as the RFCs. The size of each module is based on the mini-

mal size of RFC - 8KB shown in [41]. In this organization, when an RFC converts into a

computing unit, the sets containing the RFC are less-cacheable (low associativity com­

pared to other sets) while the other sets retain the same caching capacity. This scheme

retains more storage than the full dynamic associativity organization of Figure 5.1(a)

(each way corresponding to RFC) by converting a smaller portion of cache memory.

5.1.1 Instructions to Utilize RFC

There are three steps involved to perform a computation on RFC - configuration, loading

input, and storing output. All these steps require only load/store class of instructions.

To perform these operations, we add new instructions, named r/c load/store instruc­

tions. The format of the r/c instructions is the same as the conventional load/store

instructions except for the target register field. We use the target register field for dif­

ferent purposes as shown in Figure 4.7. Three types of instructions, r/cJoo(Lcon/,

r/cJoodJn, and initialize/terminate instructions are added. The de­

tailed format of the new class is described in Figure 4.7. We assume that only four

www.manaraa.com

95

RFCs are available in the architecture. Individual instruction operations are explained

briefly later in Section 5.1.2. Note that the FID Geld chooses the module that will be

configured for a specific function. In this chapter, we use word-data type r/c instruc­

tions for the description purpose. For different types of data (for example, half-word or

byte, etc.), the same instruction format can be used. Also, note that r/cJw_con/_end

and rfc.partia.Lset also performs a loading operation in addition to setting the mode.

The rfcjw-conf.start instruction is used for a special setting in a RFC, such as use

of multiple input buffers (i.e. input and intermediate data) as well as a hierarchical

function identification of RFCs if more than four RFCs are implemented (e.g. function

class followed by sub-FID).

5.1.2 Mechanism for the Computation in RFC

In out-of-order issue in a superscalar processor, any instruction which does not have

a dependency with preceding instructions can be issued and executed at any time if

the required resources are available. In addition, in a speculative execution, the next

instruction stream in a code sequence can be executed speculatively. The out-of-order

issue and execution may also happen among r/c instructions because there is no explicit

dependency between r/c instructions. However, the r/cJiu_m(l or 2) and r/c_awuOtd

instructions must not be issued and executed until the RFC has been configured. A

speculative execution mechanism may issue the r/c instructions in any order. To avoid

this type of exception, we add a special RFC state register. In the register, two bits

are reserved for each RFC module. The two-bit RFC state information is organized as

follows.

• 00 : NON-RFC/END-RFC - normal cache mode; no RFC performing a computa-

tion

* 01 : CONF - configuration mode for RFC as a computing unit

• 10 : CONFJDONE/START-RFCJEXE - end of configuration

* 11 : RFC _EXE - execution mode

www.manaraa.com

96

The state transition is controlled by the r/c instructions as depicted in Figure 4.8.

All the r/c instructions must access the RFC state register according to the FID field

in the microcode and then check the current state with its CMD Geld. If it is an allowed

state, the r/c instructions can be issued. Otherwise, the r/c instructions are stalled

until the corresponding state is resolved.

5.1.2.1 Configuration

The configuration of RFC from a cache module simply implies loading all the con­

tents of LUTs required to construct a computing unit. A normal cache read with a

small modification directs specific data into the designated cache line. The required

configuration data for RFCs resides in a reserved memory (address) space in main mem­

ory. The configuration is loaded into main memory when the system boots up. The

rfcjw-conf.start instruction sets the corresponding RFC state register. The subse­

quent rfcdwjconf instructions load the configuration lines to the specific RFC without

changing the RFC state.

Since the configuration data is held in main memory, the data accesses would be

cache misses if the same configuration had not been loaded previously. This cache miss

will replace the current clean/dirty lines in a write-back cache. Thus, we do not require

any separate cache flushing. A simple modification of cache replacement mechanism,

such as LRU (Least Recently Used), is required to replace the data in the specific cache

module (RFC) with the loaded configuration data in a set-associative cache organization.

The modified LRU scheme, which is set by r/cJtuucon/_3tort, replaces lines in the RFC

only if rfcdw-conf accesses in CON F mode. The configuration data in RFC should not

be modified by other load/store instructions except the rfclw-conf instructions if the

RFC state is not '00'. An additional operation in the modified LRU mechanism protects

the configuration data by removing the lines in RFC from the replacement line list in

LRU when conventional load/store instructions access the cache. Thus, the proposed

LRU scheme consists of two operations, one for r/c_Zw_con/ to replace data in the

specific RFC and the other for other load/store instructions (including rfcJwJnl/2)

www.manaraa.com

97

to access the rest of cache memory. Using the proposed LRU modification, the set

associativity of cache memory is changed dynamically depending upon the use of RFC.

A write operation to RFC is prevented by disabling the write enable in the RFC during

the execution mode.

5.1.2.2 Execution stage

The new instructions are decoded in dispatch stage according to their specification

described in Section 5.1.1. The r/c Jtu_ml/2 instruction, which loads input data to an

RFC computing unit, is decoupled from LSQ (Load Store Queue) and queued into an

input buffer (IBUF) dedicated to each RFC. The decoupled IBUF provides data in-order

to the RFC computing unit. In addition, the r/c load/store instructions process the

input/output data independently in the separate buffers. Otherwise, these instructions

pass/receive data to/from RFC serially in one buffer. The effective address for the

r/c J to _ml/2 instruction is calculated using the existing datapath and passed to the

corresponding instruction in IBUF, not in LSQ. The details of mechanism to support

out-of-order update (load) of input data in IBUF are discussed extensively in [42]. If no

slot in IBUF is available, the following instructions including conventional instructions

fetched from memory are stalled until IBUF is again available. Otherwise, it may require

a complex mechanism for a decoupled fetch queue between r/c load instructions and

other instructions. By queuing the rfcJwJnl/2 instructions into IBUF in-order, the

input data to be processed is provided to RFC in a correct order. This is like a reorder

buffer mechanism for input data of the RFC unit to remove the impact of out-of-order

execution. The input data from memory to the IBUF can be supplied out-of-order as in

the conventional LSQ. Note that instead of providing IBUF with the data in write-back

stage, the data may be directly loaded into the matched address slot in IBUF from data

buses.

A whole function in an application may not be mapped to an RFC as a computing

unit at one time. For instance, in an FIR filter, if the number of taps for the filter­

ing coefficients is larger than the number of physical taps implemented in an RFC, we

www.manaraa.com

98

configure the first set of taps in the RFC and then reconfigure it partially for the next

set of coefficients at run-time. This can be achieved using a cache write operation in

r f c d w j c o n f . The r f c j p a r t i a L s e t instruction shown in Section 5.1.1 sets the RFC state

register and all the required Sags as r/cJiojxM%/_3forf does. This mechanism protects

the current configuration data to be retained in the RFC for the partial reconfiguration

by setting the RFC state from AFCJFXE to CCWF mode directly. The following

r f c J w . c o r i f instructions reconfigure the designated RFC as done for the initial con­

figuration. In this case, an input data stream may be processed by a fixed number of

taps and partial results are stored. In the second iteration, input and partial results are

loaded (using r/cJwJnl and r/c_fw Jn2, respectively) and processed together. Thus,

we provide two lBUFs. The computation in RFC is processed when both data elements

are available.

After a computation is completed in the RFC, the output data is queued into an

output buffer (OBUF). The OBUF is a simple FIFO register file since the queued data

is already in-order. The output data in OBUF is stored into memory by the rfc. store

instructions. The rf c.terminate instruction sets the RFC state into the non-RFC mode

after finishing an entire computation. This setting should be done in commit stage to

avoid mis-execution of pending r/c instructions. If the same computation with the

c u r r e n t c o n f i g u r a t i o n i s p e r f o r m e d i n t h e n e a r f u t u r e , t h e R F C s t a t e (R F C - E X E)

is not changed. The rfcJwJnl/2 instructions do not affect any state when a mis-

prediction/speculation or an exception occurs because the r/cJw_ml/2 instructions do

not modify the precise state in microarchitecture. All the repair to be done in this case

is to flush the instructions in IBUF as done in a conventional LSQ.

5.2 Performance of ABC Architecture

For the simulation purposes, the design of the ABC processor is done using the

Simplescalar tool set [9]. The source code of the simplescalar tool set is modified to

incorporate the RFC design and the microarchitecture is modified accordingly to enable

the communication between the main processor and the RFC. To analyze the perfor-

www.manaraa.com

99

e w/o RFC B Core function w/o RFC • ABC with RFC EH Core function with R FC [

32KB-
2way

32KB-
2way 64-

4way I 4way

mpeg2dec peg2enc

9 w/o RFC 0 Core function w/o RFC • ABC with RFC • Core function with RFC

128- 256- 512- 32KB- 128- 256- 512- 32KB- 128- 256-
64- 32- 16- 2way 64- 32- 16- 2way 64- 32-

4way 4way 4way 4way 4way 4way 4way 4way

FIR (16 taps) FIR (256 taps)

Figure 5.2 Normalized execution cycles in base processor without RFC and
ABC processor with RFC, with varying cache organizations.

www.manaraa.com

100

mance of the ABC architecture, the comparison is made between the number of cycles

taken to execute each application with varying cache parameters. The performance, in

terms of the total number of execution cycles normalized to the execution cycles in the

base processor with 32KB 2-way set associative cache for each of the benchmarks [48, 36],

mpeg2dec, mpeg2enc, cjpeg, FIR-16taps, FIR-256taps, and IIR, is shown in Figure 5.2.

In Figure 5.2, each simulation result data set, for a particular cache structure, consists

of four values: (a) the total application execution time in the general purpose processor

(GPP) without the RFC, (b) portion of time taken for computing the core function

in the GPP, (c) total application execution time in the ABC processor integrated with

the RFC, and (d) the portion of time taken to execute core function in the RFC. The

variation in the cache parameters is depicted as N-L-way, where N is the number of lines

in the cache block, L is the line size in bytes and way represents the number of cache

modules. It can be observed that all the varying cache organizations have been built in

a 32-KB size cache.

The performance improvement can be obtained from the normalized total cycles

for the execution of the overall function and also the core function. The specialized

computing units configured in the RFCs improve the performance of each core func-

tion significantly. The most important factors for speed-up are the reduced number of

instructions and the acceleration of computation with a specialized unit. Hence, it is

observed that the overall speed-up is largely proportional to the frequency of the core

function calls in the entire application. However, the initial simulation results show that

the RFC is not a good idea to implement in a low associative cache in certain cases where

it dramatically reduces the cache capacity. For example, a performance degradation is

observed in the execution of mpeg2encode application in the ABC processor with 32KB

2-way set associative cache. This is due to the fact that in a 2-way set associative cache,

when one of the cache modules is used as an RFC, the cache memory capacity is reduced

to 50% and also the data cache acts as direct-mapped and hence causes the performance

degradation. This motivated us to look further into this issue in the design of the ABC

architecture, and hence we set-out to explore various methodologies of the management

www.manaraa.com

101

of RFC between the functional unit and the cache memory modes.

5.3 RFC Configuration Schemes

The simulation shows that the base processor with a smaller size cache memory

and integrated with RFC performs better as compared to a processor with larger cache

size and without RFC. This may suggest a microarchitecture with a smaller cache size

matching the performance of a traditional microarchitecture with a larger cache size.

This is true in media applications due to the streaming nature of data and the lack of

temporal locality. However, with a smaller cache memory size, the inadequacy would be

that when the RFC is configured with the core function, the cache capacity for the other

computations in the application would be reduced further. The direct-mapped cache for

mpeg2encode increases the number of execution cycles by about 16.1% for 16KB and

7.2% for 32KB due to the significant increase in cache misses [42]. Thus the performance

degradation in using RFC is caused by the reduction in cache capacity to half and in

associativity to direct-mapped, when the RFC is configured with DCT/IDCT during

the running of the mpeg2encode application.

In the multimedia applications, it has been observed that the applications like

mpeg2decode, mpeg2encode, FIR and other filters are highly iterative and hence mul-

tiple instances of the core functions would be occurring during the processing of the

entire application. For example, it has been observed that the DCT/IDCT function is

called 129,600 and 8,448 times, during the running of mpeg2decode and mpeg2encode

applications, respectively. Further, it is noted that the core functions like DCT/IDCT

occupy a varying degree of percentage of entire application as shown in Figure 5.3.

The other factor that has a predominant effect on the utilization of the RFC for the

execution of the core function would be the configuration overhead. It is the time, in

number of cycles, taken to load the configuration data into the target hardware. The

configuration overhead would be greater as more number of instances of RFC configu­

ration occur. The configuration data to program a cache into a function unit may be

either available in an on-chip cache or an off-chip memory. Load time for the configu-

www.manaraa.com

102

6-'

75-80%

Motion Compensation

DCT/IDCT

Quantization

Motion Compensation

Quantization

DCT/IDCT

(a) MPEG decoding (b) MPEG encoding

Figure 5.3 Distribution of core functions in MPEG applications.

ration data in the latter case will be larger than in the former case. The configuration

data may be pre-fetched by the host processor from the off-chip memory to reduce the

overall configuration overhead. In the ABC architecture, the time to configure the RFC,

from the normal cache memory mode to a functional unit mode, depends on the num-

ber of cycles to write words into a cache. On the other hand, an RFC operating as a

functional unit can also be partially configured at run-time using write operations to

the cache. When a partial reconfiguration occurs, the function unit must wait for the

reconfiguration to complete before feeding the input data. Since the computation data

(input and output data) and the configuration data (contents of LUTs) for an RFC

unit share the global lines for data buses, we cannot perform both the computation and

the partial reconfiguration simultaneously. It is possible to perform both the operations

simultaneously, if separate data buses for computation and configuration are provided,

which would dramatically increase the cost of the microarchitecture design.

Thus it becomes imperative for us to study and devise various RFC management

schemes for an efficient utilization of the computing and memory resources to achieve a

better performance from the integration of the RFCs into a conventional microprocessor.

www.manaraa.com

103

5.3.1 Schemel: One-time con&guration of RFC

In the current design [42] of the ABC architecture, the configuration of the core func­

tion into the RFC module is performed a priori, i.e., at the beginning of the application

so that the configuration of the same core function at multiple instances can be avoided.

However, due to this method, the computations other than the core function and those

computed by the main processor, are denied the usage of all the cache modules. Hence,

as discussed earlier, for an entire MPEG application in an architecture with 32KB 2-

way cache, only 50% of cache memory is available for usage, besides setting the cache

associativity to direct-mapped, even when the core function computing RFC module is

inactive.

This scheme would prove to be beneficial when the core function is dominant in

its execution over the entire application as in the case of DCT/IDCT function in the

mpeg2decode. However, the scheme has some limitations for adoption, as it can be

observed that it will have a negative impact when the percentage of core function is

significantly small over the entire application as in the case of DCT/IDCT function in

mpeg2encode application. Also, the scheme would not be better for adoption, when the

configuration overhead, the total number of cycles taken to configure the core function,

would prove to be significantly smaller and can be offset by the maximum utilization of

the cache memory resources.

5.3.2 Scheme2: Continual configuration of RFC

To overcome the limitations of the continuous denial of usage of full cache memory

capacity for computations other than the core function, the RFC module can be config­

ured with the core function at every instance of its occurrence and then be released to

function as normal cache memory for the benefit of other computations. Thus the RFC

module has to follow a pattern of continuous switching of modes, between the normal

cache memory mode and the functional unit mode.

As it was originally anticipated and as argued in the case of the first scheme, the pro-

posed continual reconfiguration scheme also has its gains and limitations. This scheme

www.manaraa.com

104

will have a negative impact when the percentage of core function execution time is

significantly large in the entire application as in the case DCT/IDCT function in the

mpeg2decode. Besides, the scheme would prove to be limiting when the number of

instances of the occurrence of the core function is high as the configuration overhead

would be significantly large.

5.4 Analysis of Execution Time

In this Section, we present our arguments to justify the need of an analytical study

of the two RFC configuration schemes described above. To adopt the RFC based ABC

architecture for processing various multimedia applications, one of the above schemes

has to be incorporated in the design. In view of the gains and limitations of the proposed

RFC configuration schemes, and keeping in view of the nature of the multimedia appli­

cations where the percentage of core function in the entire application and the number

of instances of occurrence of core function vary, we develop a mathematical model for

the analysis of the performance in terms of total execution time, to determine which

scheme proves to be beneficial under varying circumstances.

As a precursory, before presenting the mathematical model, the discussion on the

observations, from which the model has been developed, would be appropriate. From

the preliminary results of simulation, it is observed that the performance of RFC based

ABC architecture, in the processing of various multimedia applications, is almost the

same irrespective of various cache designs like 32KB 2-way, 64KB 2-way, 64KB 4-way and

128KB 4-way. Hence to minimize the design cost, let us assume that a cache structure of

32KB 2-way is available. In that case, only 50% of cache memory would be available for

the entire application, when the one-time RFC configuration scheme is incorporated into

the architecture design. Hence it needs to be studied whether using the RFC module

for the configuration of the core function, only when required, would be advantageous

or not.

Further, the architecture and application parameters, that will have significant im­

pact on the overall execution time, have to be considered for the trade-off analysis among

www.manaraa.com

105

various schemes. The parameters that need to be considered are, the number of cycles

required for configuration of RFC (Cp), the number of instances of occurrence of core

function in the application (N), the fraction of time the core function is processed over

the entire application (P), and the cache blocking factor (^). Note that (1-P) represents

the fraction of time for the computations other than the core function. Also, since we

design the architecture for the faster execution of applications by accelerating the core

function, we assume that there always exists a portion of the core function that can

be mapped into the RFC. Hence the assumption that F ^ 0, holds true for the entire

discussion.

Table 5.1 Architecture Design Parameters.

C, Cycle time for RFC configuration when
data is fetched from off-chip memory.

p Fraction of core function over the
entire application.

N Number of instances of core function
over the entire application.

<f> Cache blocking factor.

Execution time of core function in the
base processor.

Execution time of core function in the
RFC functional unit.

S Speed-up of core function = (j ^)

The total execution time of an application in the base processor without RFC

can be represented by the expression:

Xorg = XA {—f-) + X A — — — (5.1)

Similarly, the total execution time (%r/c) of the application in the RFC integrated ABC

processor can be represented by:

X r f c — X a (^ - p ^) < f > + C ' p n c + X g (5.2)

www.manaraa.com

106

The Xa{^jt) accounts for the execution time of the computations other than the core

function. When the continual RFC configuration scheme is employed, the cache blocking

factor (<^) % 1, i.e., all the cache modules are available for utilization as cache memory

during the execution of computations other than the core function. The 4> is assumed

to be approximately equal to 1 instead of being exactly equal to 1 in the continual

configuration scheme, due to the fact that whenever the RFC module is released to

be used as a cache memory module, the data is written into the cache module to be

readily used by the main processor and that data is again replaced by the configuration

data when RFC is switched to functional unit mode. Thus, in the process of RFC

being switched between various modes, the main processor will be experiencing cache

misses, which might be hit under normal cache operation. When the one-time RFC

configuration scheme is employed, the cache blocking factor (</>) > 1, as one of the cache

modules is reserved for the functional unit and hence execution of the computations

other than core function would take more time due to the rise in cache miss rate and

the reduced cache capacity.

The (% Mc accounts for the RFC configuration overhead over the entire application.

When the one-time RFC configuration scheme is integrated into the design, the config-

uration overhead will be significantly smaller, as = 1. Also, (% = Cp since we assume

that during the first time configuration of RFC, all the configuration data would be a

miss in the cache and hence need to be fetched from the off-chip memory. However,

when the continual RFC configuration scheme is employed, the configuration overhead

forms a considerable portion of the total application execution time, as = N. However

the bright spot in this case is that the simulation has proved that CÏ Cp, since the

subsequent instances of configuration of RFC with the same function as the preceding

instance configuration will not take as many cycles as the first instance of configuration.

This is due to the fact that, between the adjacent calls of the core function when the

other computations are being executed, a few data blocks in the RFC module get re­

placed and hence during the subsequent configuration, only the corrupted configuration

data is fetched from the off-chip memory.

www.manaraa.com

107

Table 5.2 Variation in parameters for various RFC configuration schemes.

One-time
configuration

Continual
configuration

Cache blocking ^ > 1 ^ % 1

Configuration instances Tie ~ 1 nc = N

Configuration cycles <%<Cp

The summary of the variation of parameters with respect to each of the schemes

employed is as shown in Table 5.2. The parameters, ^ in the case of one-time RFC

configuration scheme, and C'p in the case of continual RFC configuration scheme are

the two factors that affect the total execution time predominantly. It is not possible

to exactly quantify these two factors, as both ^ and are entirely dependent on the

amount of data cache accesses, the cache organization and the cache miss rate. However,

fortunately we can define the upper bounds for each of the parameters with the goal of

obtaining a better performance from the RFC based ABC microprocessor. The related

discussion is given in the following subsections.

5.4.1 Execution Time Analysis With One-Time RFC Configuration

When the design of ABC architecture is incorporated with the one-time RFC recon­

figuration scheme, the expression for will be modified, after substituting relevant

parameters from Table 5.2, as given by the following expression:

X r f c = X a (j) + C p + X B (5.3)

We are aware that, in the worst case, the configuration time (Cp) can be in the order of

thousands of cycles while, would be in the order of millions of cycles and hence CL

can be conveniently neglected in the expression. Now, for a gain in the performance, the

execution time of application in the RFC based ABC processor should be less than the

execution time of application in the base processor. Hence, solving Xr/c < X«rg yields

^ (p—) (5.4)

www.manaraa.com

108

from which we can obtain the upper bound for the cache blocking factor as:

1 — (—)
(5.5)

From the above expression, it is obvious that the lower bound on (f > is 1, as ^ < 1

under all circumstances, i.e., the speed-up obtained for the core function by computing

in the RFC would be at least 1.

The variation of the cache blocking factor with respect to the fraction of the core

function (P) and the speed-up of the core function (S) is shown in Figures 5.4 and

5.5. It can be observed that, for applications with a larger fraction of the core

}—•—S=5 —siâ—S=10 —M—5=20 S=50 |
12

S

1
S
3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of core function

Figure 5.4 Variation of cache blocking factor with the fraction of core func­
tion.

function, the upper bound of the cache blocking factor is large which signifies that the

cache blocking factor (<£) can be raised up to its upper bound without degradation in

the overall performance when the one-time RFC configuration scheme is implemented.

Similarly, when the percentage of the core function is small, the upper bound of <f> is

www.manaraa.com

109

small and hence the value of <j) needs to be maintained within that tight bound to avoid

a degradation in the performance of the ABC processor. Besides, it can be observed

that for a fixed portion of the core function, the upper bound of the <j) remains almost

constant irrespective of a large variation in the speed-up of the core function. Thus it

can be deduced that for applications with smaller fractions of core function, it might

become necessary to adopt the continual RFC configuration scheme where the impact

of <f> will be nullified, as discussed in the following subsection.

>=0.1 ,.i: P=0.25 —P=0.5 —5ft— P=0,75 |

4.5

4

3

o) 2.5

2

.5

0.5

0
5 20 25 40 45 50 5 30

Speed-up of core function

Figure 5.5 Variation of cache blocking factor with speed-up in core function.

5.4.2 Execution Time Analysis With Continual RFC Configuration

When the design of ABC architecture is integrated with the continual RFC reconfig­

uration scheme, the expression for Xrfc will be modified, again substituting the relevant

parameters from Table 5.2, as shown:

JTr/c = ^ (V) + (%# + %* (5.6)

www.manaraa.com

110

As argued in the earlier subsection, for the implementation of continual RFC configurer

tion scheme, it is assumed that the cache blocking factor (^) = 1 for practical purposes,

though in the ideal scenario, % 1. Now, for a gain in the performance, the execution

time of application in the RFC based ABC processor should be less than the execution

time of application in the base processor. Hence, solving %r/c < -Xm-g yields

from which the upper bound for the average configuration time (C ' p) can be obtained as:

The upper bound on the average configuration time ((%) signifies that the total con-

figuration overhead in the application should not exceed the difference in the execution

time of the core function in the base processor and the RFC. This inference synchronizes

with the generalized condition for the RFC based ABC processor to perform better than

the base processor.

5.4.3 Effect of Number of Core Function Instances (N)

From the expression for %rfc, it can be observed that, in general, the execution time

oc N, i.e., more the number of instances of the core function in the application, more

will be the execution time due to the higher configuration overhead. However, for a

considerably smaller number of N, the continual RFC configuration scheme would prove

to be beneficial while the effect of a larger N can be offset by employing the one-time RFC

configuration scheme. For example, the simulation study shows that the DCT/IDCT

function has been called 129600 times in the mpeg2decode application, while it has been

called 8,448 times in mpeg2encode application. Hence, while running the mpeg2decode

application, the one-time RFC configuration need to be employed while the continual

configuration scheme proves to be better while running the mpegZencode application,

as discussed in the results section.

X A (^) + a , N + X B < ^ (5.7)

(5.8)

www.manaraa.com

I l l

5.4.4 Effect of Percentage of Core Function (P)

From the expression for Xf/c, it can be observed that the execution time oc (^r-)

and hence, more the percentage of the core function in the application, higher will be

the speed-up of the overall application. This phenomenon is typical of the characteristic

of Amdahl's Law, where the speed-up of the overall application is proportional to the

portion of the application being accelerated. It can be deduced that when the portion

of core function is smaller over the entire application, then it will not make a significant

impact even when it is accelerated using an RFC. The simulation results, as shown in

Section III, proves this principle. FYom Figure 5.2, it can be observed that the speed-up

of around 4X is obtained in the execution of mpeg2decode application in RFC integrated

ABC processor while the maximum speedup obtained in the execution of mpeg2encode

application in RFC integrated ABC processor is only 1.07X and it can be seen that the

DCT/IDCT computation occupies a portion of 77.27% in the mpeg2decode application,

while it occupies a portion of only 6.89% in the mpeg2encode application.

5.4.5 Effect of Cache Blocking Factor (^)

When all the cache modules are not available during the application execution time,

size of the cache reduces along with reduction in the cache associativity, which causes

the cache miss rate to increase. Subsequently, the execution time of the application

increases. Hence, from the expression for JTr/c, it is obvious that the execution time

oc However, when the portion of the computations other than the core function in

the overall application is significantly smaller, it will not be appropriate to employ the

continual RFC configuration scheme, as the gain obtained due to the availability of full

cache capacity for smaller execution time would be offset by the configuration overhead.

5.5 Results and Analysis

The normalized execution time obtained by running the mpeg2encode application in

the ABC processor with different RFC configuration schemes and with varying cache

www.manaraa.com

112

organizations, is compared with the base processor performance as shown in Figure 5.6.

Besides, the relative improvement in the performance of ABC processor with two differ-

ent RFC configuration schemes is shown in Figure 5.7.

From Figure 5.6, it can be observed that the performance of ABC processor with

continual RFC configuration scheme is better than the base processor without the RFC

and also the ABC processor with one-time RFC configuration scheme, for all the cache

organizations in the execution of mpeg2encode application. This is due to the fact that

the percentage of the core function over the entire application is significantly smaller

and also the number of instances of the core function is not big enough to generate a

considerable configuration overhead. Note that the portion of core function indicated

in the continual RFC configuration scheme includes both, the RFC configuration over-

head and the computation time for the core function. Another interesting observation is

that when the number of times (N) the core function is called for configuration in RFC

is 8,448 instances and the configuration time (Cp) for full loading of the RFC module

with the configuration data from the off-chip memory is 798 cycles, the total configu­

ration overhead is expected to be 6,741,504 cycles. However, due to the cache hit of

configuration data for subsequent RFC configurations, the total configuration overhead

is determined to be 2,215,425 cycles which is only 32% of the expected configuration

overhead.

For the above reasons, the continual RFC configuration scheme performs better even

in the 32KB 2-way cache while the one-time RFC configuration scheme results in a

performance degradation, as shown in Figure 5.7. Also, it can be observed that there

is an improvement in the performance of the continual RFC configuration scheme, with

the reduction in the number of blocks in the RFC cache module. For example, it can

be observed that the performance of continual RFC configuration scheme improves for

the RFC cache module with 512, 256 and 128 blocks, in that order. This is due to the

fact that, as the number of blocks in a cache module increases, the configuration time

for RFC module increases and subsequently configuration overhead is significant, thus

having a negative impact on the overall performance.

www.manaraa.com

113

• Base w/o RFC BCore function w/o RFC • One-time contig total
• One-time config core B Continual contig total El Continual contig core

110 -

100 -I

90 -\

80

70

60

50 -

40 -

30

20

512-16-4 way

Figure 5.6 Normalized execution cycles in the base processor without
RFC, and the ABC processor with different RFC configuration
schemes.

www.manaraa.com

114

H One-time configuration • Continuai configuration

Figure 5.7 Relative performance improvement in two RFC configuration
schemes.

www.manaraa.com

115

5.6 Future Work

Conventional programmable processors, such as microprocessors, have support for

large on-chip instruction caches. In the 1990's, the desktop processors adopted super-

scalar techniques [65] to exploit the instruction-level parallelism (ILP). Accordingly, to

meet the demand for larger instruction depth, the on-chip instruction caches have been

growing larger over time and can now hold hundreds to thousands of instructions. On

the other side, the reconfigurable array has an on-chip space requirement of only one

instruction per element, i.e., the single instruction which tells the logic array what func-

tion to perform and how to route its inputs and outputs. Increasing the number of

on-chip instructions allows the device capacity to be used instantaneously for different

operations at the cost of diluting the area used for active computation and hence de­

creasing device computational density [20]. Figure 5.8 shows where both traditional and

reconfigurable organizations lie in the wide architectural space. When the reconfigurable

array is active in computing the core function, the space required for storing a stream

of instructions is minimal. This can be observed from the fact that, when mpeg2decode

application is run on the preliminary design of ABC architecture, the total number of

instructions executed when the core function is computed in RFC is only 23.9% of total

instructions executed when the entire application is run in the microprocessor alone.

Thus the benefits of using the instruction cache modules for computing purposes need

to be explored.

Conceptually, there is no difference between the organization of instruction and data

caches and the accesses in both the caches are associative. However, the caches differ

in their number of read and write ports. An instruction cache needs one write-port,

since a cache block is targeted to be filled from the memory. A data cache should

have more than a few write ports depending on the number of instructions committed

each cycle. The loading of the configuration data into the instruction cache from the

memory is equivalent to the fetching of the instructions from the memory and thus do

not require any modifications in the existing ABC architecture design. When the data

cache is acting as a computing unit, the main processor makes the computation data flow

www.manaraa.com

116

I
Q 2048

! -

r •
A , 0
riM SIMDAc

P| v PlOtC.su

1 4 16 64 256 1024
Datapath width

Figure 5.8 Architectural Design Space.

between the memory and RFC by using the normal load and store operations. The input

data supplied for execution are diverted into an input buffer (IBUF) from where RFC

consumes the data, and the results from RFC are stored in an output buffer (OBUF)

from where the main processor reads the data to store back into memory. When the

instruction cache is used as computing unit, a slight modification in the architecture is

necessary to allow the processor to divert the data into the input buffer for the instruction

cache module, and a mechanism need to be provided to enable the processor to read the

results from the output buffer of the instruction cache module. A such mechanism to use

the instruction cache modules as the computing units will give a chance to build a larger

number of on-chip computing cache modules and thus a greater degree of computational

power to the adaptive computing model.

www.manaraa.com

117

5.7 Summary

We have given an overview of the development of Adaptive Balanced Computing

(ABC) microarchitecture using a Reconfigurable Functional Cache (RFC) module. The

RFC accelerates the computations using a specialized computing unit with minimal

modification and overhead in area/time domains in the cache and microarchitecture.

The summary of preliminary results are presented to support the cause of development

of ABC microprocessor. Further, in continuance of our effort to build an efficient ABC

architecture with improved performance, various RFC configuration schemes have been

studied. A detailed study of the performance analysis of the architecture, in terms of the

execution time of the application, is given. The impact of various architectural param-

eters and the factors governing the structure of an application over the execution time

of an application has been extensively studied. With the help of the study undertaken,

the design of ABC microprocessor can be incorporated with the dynamic decision capa-

bility, so that appropriate RFC configuration scheme is chosen dynamically for running

a particular application.

www.manaraa.com

118

6 IP ADDRESS LOOKUP ENGINE

In this chapter, we explore the application of reconfigurable architectures to the Geld

of computer communications and networks. With a rapid increase in the data transmis­

sion link rates and an immense continuous growth in the Internet traffic, the demand for

routers that perform IP forwarding at high speed and throughput is ever increasing. The

key issue in the router performance is the IP address lookup mechanism based on the

longest prefix matching scheme. Earlier work on fast IPv4 routing table lookup includes,

software mechanisms based on tree traversal or binary search methods, and hardware

schemes based on Content Addressable Memory (CAM), memory lookups and the CPU

caching. These schemes depend on the memory access technology which limits their

performance. The research proposes a Binary Decision Diagrams (BDDs) based opti-

mized combinational logic for an efficient implementation of fast address lookup scheme

in reconfigurable hardware.

6.1 Introduction

The effective handling of the tremendous amount of Internet trafBc and its continuous

doubling every few months depends on the efEcacy of the routers. The key issue in router

performance is the IP address lookup mechanism used for the ferrying of the large num­

ber of incoming communication packets to respective outgoing links. The router uses the

destination IP address encoded in the incoming packet to lookup the next hop router to

which the packet has to be forwarded. Since the introduction of Classless Inter Domain

Routing (CIDR) in 1993, the IP address lookup mechanism has been designed based

on the longest prefix matching (LPM) algorithm. The problem involves two steps, first

www.manaraa.com

119

to search the routing database to obtain the longest matching prefix from all the pos­

sible prefixes that match the particular destination IP address, and second to retrieve

the next hop port for the longest matched prefix. With the advent of optical medium

for data transmission, the link rates have rapidly increased from 10 Mbps Ethernet to

40Gbps OC768c and there is every possibility of the line rates increasing well beyond.

The primary concern in the design of next generation routers is to obtain maximum

possible packet throughput to meet the demand from the high-speed transmission links.

The continuous increase in the number of users on the Internet causes the creation of

some explicit routes for certain users and constrains the router from aggregating the

routing table effectively. This results in the expansion of routing tables and thus the

search space of prefixes against which the destination address of each packet needs to

be matched. Further, when the IPv6 routing protocol is introduced where the address

length is 128 bits, the problem of routing millions of communication packets every sec­

ond, based on longest prefix matching, becomes a labyrinth. In these circumstances,

where IP routing tables are expanding in both the dimensions, i.e., address length and

number of prefixes, the routing mechanisms developed should be capable of providing

the throughput demand from high-speed transmission links.

In this chapter, we propose a reconfigurable hardware solution, using the well received

concept of Binary Decision Diagrams (BDDs), that provides a high-speed IP address

lookup and enables a data throughput of 200 Gbps (average packet size of 1000 bits)

in the current day large routers [33]. Binary Decision Diagrams (BDDs) are one of the

biggest breakthroughs in CAD in the last decade. BDDs are a canonical and efficient

way to represent and manipulate Boolean functions and have been successfully used in

numerous CAD applications. Although the basic idea has been around for more than 30

years [1], it was Bryant who described a canonical BDD representation [8] and efficient

implementation algorithms [6].

The rest of the chapter is organized as follows. Section II presents an overview of the

longest prefix matching problem. In Section III, we review the related work done followed

by a brief overview on Binary Decision Diagrams and the motivation for the proposed

www.manaraa.com

120

scheme. Section IV gives the details of the proposed scheme and the implementation

issues. In Section V, we present the results obtained from the implementation and

analyze the performance of the scheme. We also discusses in detail, the routing table

update scheme and the scalability of the scheme to IPv6. Finally, Section VI concludes

the discussion.

6.2 Longest Prefix Matching

The routing of the communication packets in the IP domain is done on the Next-Hop

basis, i.e., the router takes the responsibility of sending any incoming packet till the next

hop only. Consequently, the packet reaches its final destination in multiple hops. The

next hop for a packet is determined by the router based on its destination IP address.

Each router has a database, in the form of a routing table, of the prefixes of varying

length and the corresponding next hop port (NHP) for each prefix. A typical routing

table is shown in Table 6.1.

Table 6.1 A sample routing table.

fre/iz length
* 0 0
0* 1 1
01* 2 3
10* 2 2
001* 3 1
101* 3 2

The length of the prefixes can vary from 0 to 32 bits. For an incoming packet, its

destination address is compared with all the current prefixes in the routing table and

the next hop port (NHP) associated with the longest matching prefix is determined to

be the output port for the packet. For an example shown in Figure 6.1, a destination IP

address 129.186.200.205 matches three prefixes 129/8 (prefix/length), 129.186/16 and

129.186.192/20 in which case, the longest matched prefix 129.186.192/20 is considered

www.manaraa.com

121

to be the best match and the packet is routed to the output port associated with that

particular prefix. In other words, routing based on the longest prefix matching is equiv­

alent to routing the packet to the nearest possible IP address. If none of the prefixes

match with the destination IP address, the packet is sent to a default port, which is

associated with a prefix of length zero.

Destination IP address = 129.186.200.205

•ji\ -,i,i i'>]ivs I'lOtownuioiioi!

Compan length of
maichcd pjefnes

Routing Table

Prefix (decimal notation/prefix length) NHP

10000001 (129/8) A

10000001 1010 (129.172/12) B

10000001 10111010 (129.186/16) C

10000001 10111010 1100 (129.186.192/20) D

, L.P.VW 192/20 J-

Longest Prefix Match

Figure 6.1 Packet routing based on longest prefix matching mechanism.

The metrics taken into consideration, in general, while designing the IP lookup al­

gorithms are Preprocessing time, Storage requirements, Lookup rate and Update time.

Lookup rate is the most significant parameter that needs to be addressed. With the lat­

est advancements in the network technology, the communication speed is leaping from

Ethernet of 10Mbps to Fiber Distributed-Data Interface (FDDI) of 100Mbps to gigabit

Ethernet. With the OC192c Line (Line-rate lOGbps), 31.25 million packets (average size

of 40Bytes) have to be processed each second, while for the OC768c (Line-rate 40Gbps),

the processing rate required is 125 million packets per second. The data throughput

rates of various transmission links and the corresponding time budget for packet pro­

cessing in a network processor is shown in Table 6.2. It is significant to note that, apart

www.manaraa.com

122

from the lookup and forwarding operation the packet processing in a network processor

includes various other functions like Protocol recognition and classification, Segmenta­

tion assembly and reassembly (SAR), Queuing and access control, and Quality of service

(QoS). The time budget shown for packet processing includes the execution of all these

functions, and the lookup operation is required to consume a portion of that budget.

Hence, the significance of designing a mechanism for high-speed IP address lookups

cannot be overemphasized.

Table 6.2 Data throughput and packet processing time budgets for ATM
over SONET. Packet size considered is 40 bytes.

Media link rate packets/sec time per
(M illion) packet (ns)

OC3 ~ 150 M bps ~ 0.491 ~ 2034.5
OC12 625 Mbps - 2 - 488.2
OC48 2.5 Gbps ~ 8.38 - 119.2
OC192 10 Gbps ~ 33.5 ~ 29.8
OC768 40 Gbps - 134.2 - 7.45

The large IPv4 routing tables known today typically contain around 50,000 prefixes

and a large IPv6 routing table is expected to contain around 500,000 prefixes. Conse­

quently, the need for enormous amount of data processing at phenomenal speeds, based

on longest prefix matching in a large database of prefixes, makes the problem more com­

plicated. Further, the IP address, which is 32 bits long in IPv4, would be 128 bits long,

when IPv6 is introduced, making the problem of IP forwarding even more complex.

6.3 Related Research

The IP address lookup schemes introduced so far can be broadly classified into two

categories, viz., so/*tw%ns and Aondwone approaches [61]. In amelioration to the classical

binary trie traversal approach, several software solutions have been proposed. One of

the first was the prefix matching algorithm using paWi-compneaW friea [64] based on the

PATRICIA (Practical Algorithm to Retrieve Information Coded in Alphanumeric) the

www.manaraa.com

123

introduced in 1968 [51]. The other schemes subsequently proposed include the various

trie based approaches [40, 74, 84] and other binary search methods like search on

prefix lengths [77, 76] and multiway and multicolumn search [46]. Besides, other schemes

based on prefix expansion [66], string matching [21] and level compression tries [55] have

been proposed. The software address lookup schemes mostly are based on the tree

traversal approach and hence perform according to the computing environment used

for the implementation of the algorithm. The key elements that play a pivotal role in

the performance of the software mechanism are the processor speed and the memory

characteristics (capacity and access time) of the computing environment in which the

algorithm is implemented. The best known algorithm for IP address lookups is the Binary

search on prefix lengths with the complexity of the lookup operation being logarithmic in

the prefix length (W), i.e., C?(log VF), independent of the number of prefixes (N). Even in

such case, the lookup operation involves five memory accesses in the worst case for IPv4

and thus is limited by the capacity of the computing environment. The scheme with

0(log W) lookup complexity gives a throughput up to 10 Million lookups per second

(Mips), when implemented in a computing environment consisting of a Pentium-Pro-

based computer with a clock speed of 200 MHz and a 512 KB L2 cache memory [61].

The throughput, even when scaled for faster processors and larger memory capacity, will

not be able to meet the current day requirements in packet processing rates.

Apart from the above software schemes, attempts have been made to design hard­

ware mechanisms for prefix matching to enable high-speed routing. Various hard­

ware schemes like Content Addressable Memories (CAMs) [50], memory lookup based

schemes [28, 53, 79], CPU caching [14], and circuit logic implementation in FPGAs [32]

have been proposed. Recently, Pao et al. proposed a hardware architecture [57] imple-

mented with the partition of binary trie into multiple levels, and Taylor et oZ. proposed

a reconfigurable device based Fast Internet Protocol Lookup (FIPL) engine [69] for high-

speed routing.

Content Addressable Memory can search all of its entries in parallel given a desti-

nation IP address. The scheme based on CAMs uses a separate CAM for each possible

www.manaraa.com

124

prefix length and hence will require 32 CAMs for IPv4 and 128 CAMs for IPv6 result-

ing in an expensive solution. Besides, CAM might not be able to keep pace with the

fast developing high speed networks as it depends on and is limited by the IC process

technology. Memory lookup schemes are based on SRAM indirect indexing, and hence

require an additional ASIC to corporate with the memory. The basic scheme in [28]

uses a two-level multibit trie with a fixed stride of 24-bits and 8-bits for the first and

second level, respectively. This scheme is developed based on the important observation

that in a typical backbone router, most of the prefixes are of length 24 bits or less.

Thus a prefix expansion methodology is used wherein all the prefixes with length less

than 24 bits are expanded accordingly. The memory access speed might not be able

to cope up with the advent of new optical link rates and hence limits its performance.

The architecture with hardware indexing implementation [57] of binary trie promises a

high throughput, but requires a large memory for the implementation. Consequently,

the practicality of the implementation of the scheme for the next generation Internet

routing with IPv6 protocol remains to be seen. The FIPL engine [69] gives an average

throughput of 10 Mips using Eight FIPL engines for routing in the MAE-West router

with 16,564 prefixes. Besides, the scheme does not discuss its scalability to the future

trends in Internet routing. In this discussion, we have shown a higher throughput of up

to 168.6 Mips for MAE-West router with a larger number of prefixes (29,487), with an

added advantage that our scheme is easily scalable for the rapidly expanding routing

tables.

In the past, caching has not worked well in backbone routers because of the need

to cache full addresses. This potentially dilutes the cache with hundreds of addresses

that map to the same prefix. Besides, typical backbone routers may expect to have

hundreds of thousands of Sows to different addresses. The Wilder study [70] reports up

to 240,000 concurrent Sows with less than 20 packets per flow. Short web transfers are

a likely reason for this behavior. Some studies have shown cache hit ratios of around

50-70% [54]. Thus, caching can help, but does not avoid the need for fast lookups.

Most important, the above schemes become impractical at the advent of IPv6 due to

www.manaraa.com

125

the requirement of larger storage capacity.

6.3.1 Binory Decision Diogroma

As is well-known, a Boolean function /: -+ B can be represented by a Binary

Decision Diagram (BDD), a directed acyclic graph obtained by applying an ordering

constraint over the input variables and reduction operations on a binary decision tree,

as proposed by Bryant [8]. For example, the binary decision tree and the diagram for

the function /= zo^i + + %2%o as shown in Figure 6.2.

(a) (b)

Figure 6.2 Function / = #oa;i + + ^2^0 represented as (a) Binary
decision tree and (b) BDD.

Further more, the complexity of the BDD is dependent on its size, measured in the

number of nodes. Hence, since a long time, one of the main research focuses has been

to reduce the number of nodes in BDD representation. Reduction operations consist in

eliminating redundant nodes from the binary tree. A node can be eliminated if

a. both the child nodes are equivalent, which means that the binary logic extracted

from both the nodes leads to a same output.

b. there exists an other node at the same level in the decision tree and with equivalent

high and low child nodes, respectively.

www.manaraa.com

126

6.4 BDD Based IP Address Lookups

6.4.1 Motivation

The proposed scheme is motivated from two observations, first being that even at

the largest Network Access Point, the number of next hop ports (NHPs) is generally

not greater than 256. Hence, a next hop port (NHP) associated with any prefix in the

routing table can be encoded using a 8-bit binary code. For example, any next hop port

(NHP) in the MAE-east [33] routing table can be safely represented by a 6-bit binary

code. Every bit of the output port can be computed by a combinational logic circuit

whose optimal minimization is obtained with the help of Binary Decision Diagrams.

The second observation is that the number of elective nodea, defined as the minimal

number of nodes required to construct a binary decision tree in order to cover all the

prefixes in the routing table, is significantly smaller as compared to the upper bound

on the theoretically required number of nodes. It is shown in the following section that,

for the 32-bit IP address with the biggest available routing table of MAE-east [33], the

number of redundant nodes is more than 99.99%. Thus constructing the binary decision

tree with a fewer nodes and without any redundant nodes makes it very attractive for

the application of Binary Decision Diagrams to optimize the logic. Besides, it is shown

in the next sections that, while the upper bound on nodes increases exponentially with

the IP address size, the number of effective nodes do not, making it an advantageous

fact in view of the future implementation of IPv6 with the 128-bit IP address.

6.4.2 Details of the Scheme

For further understanding, consider the routing table given in Table 6.1. The binary

decision tree representation for the routing table is shown in Figure 6.3. A node is

assigned with the associated next hop port (NHP) if the path taken till that node from

the root node forms a valid prefix. Note that the root node is assigned with a default

output port (in this case 0) as the length of the prefix at that node is zero. However, as

mentioned earlier, the partial construction of the binary decision tree is sufficient to cover

www.manaraa.com

127

all the prefixes in the routing table resulting in only eight egWiue nodes. The redundant

nodes, which can be conveniently ignored in the binary decision tree representation, are

shown in dotted lines.

"p..

o © ©' P
/ i (jT) ' ' / ^ ^ (2^) / i ')

Figure 6.3 Binary decision tree for the sample routing table. Dotted nodes
are redundant.

Now, the number of distinct next hop ports in this case being four, each next hop

port (NHP) is encoded with a 2-bit binary code, TVfffi and being the most

significant (MSB) and the least significant (LSB) bits, respectively. When the ports are

identified with the binary code, the binary decision tree representations for the

and bits are as shown in Figure 6.4. It can be observed that a further reduction

in the number of effective nodes is obtained, the process of which is explained in detail in

the subsequent subsection. Note that any effective node without an output bit assigned

to it, would inherit the output of its parent node.

For the sake of convenience, let's assume that the n-bit IP address is represented by

the binary variables z„-i, %n-2,...., 3% where 3„-i represents the MSB of the IP address.

Now, applying the BDD algorithm on the binary decision trees of each bit of the output

port, the BDDs for the functions are obtained to be as shown in Figure 6.5.

6.4.3 deducing Mxfea

When the output port is assigned to each of the node on the binary decision tree,

with the further analysis, it is observed that the binary encoding of the output ports has

www.manaraa.com

128

Figure 6.4 Binary decision tree for (a) (b) with all elective
nodes assigned with output. Dotted nodes are redundant.

0/ \ 1

M
1 1 N X /o

0! > y

(a)

l \
/ \

0/ \1
/ \

m à
(b)

Figure 6.5 BDDs for (a)###. (b)NHfb

www.manaraa.com

129

given a further scope for the reduction in the number of nodes. For example, consider a

situation where two leaf nodes, with a common parent, are assigned with output ports

of 3 and 11, respectively. Suppose the parent node is assigned with an output port of

2. When the next hop port is encoded with a 4-bit binary code, it can be observed, as

shown in Figure 6.6, that a child node with the same output bit as its parent becomes

redundant. The redundant nodes are shown in dotted lines in the figure.

(b) (c) (d) (e)

Figure 6.6 (a) Nodes with assigned NHP ports. (b),(c),(d),(e) Output bits
assigned to each of the nodes in 4-bit binary encoding of NHP.
Dotted nodes are redundant.

With the above procedure, it is shown that in each of the output bit representation,

for the biggest available routing table of MAE-east [33] with 32-bit IP address, an

additional 36% reduction is obtained in the number of effective nodes. This significant

reduction in the number of effective nodes makes the application of Binary Decision

Diagram approach, for obtaining the optimized logic, even more effective.

The number of effective nodes are obtained during the construction of the binary

decision tree for a few sample routing tables with IP address lengths of 3, 5, 8 and 16

and for the real-time 32-bit IP MAE-east routing table. The prefix distribution of a real-

time routing table available at [33], has enabled to generate the prefixes in similar lines

for the sample routing tables with IP address lengths of 3, 5, 8 and 16. It is observed

that the construction of the binary decision tree for the MAE-east routing table required

only 91925 effective nodes, which is largely insignificant as compared to the theoretical

www.manaraa.com

130

upper bound of more than eight billion nodes. Further, when the output port is encoded

with a 6-bit binary code and the reduction procedure is applied on each of the trees for

individual binary output bits, the number of effective nodes obtained were only around

64% of the actual effective nodes. The summary of results is shown in Table 6.3.

Table 6.3 Effective nodes for sample routing tables and the real-time 32-bit
IP MAE-east routing table with 24792 prefixes.

IP address
length

Effective nodes
before reduction

Effective nodes after reduction IP address
length

Effective nodes
before reduction

AT##
3 8 - - - - 5 3
5 31 - - 20 18 20
8 116 - - 85 87 81 85
16 3408 2098 2172 2181 2219 2164

32 (MAE-east) 91925 57955 58781 58577 58409 58387 58712

6.4.4 Implementation Issues

As mentioned earlier, the output interface ports at any router can be identified by

at most an 8-bit binary code. Hence, for the above proposed scheme, the combinational

logic design has to be done for eight output bits and hence that would give eight Binary

Decision Diagrams to be processed. Each of the synthesized logic can be mapped into

one or more Configurable Logic Blocks (CLBs) in an FPGA as shown in Figure 6.7.

The processing of the BDDs is performed with the SIS package [23]. The combinational

logic subsequently obtained is implemented using Verilog coding and the logic synthesis

is performed using the design analyzer tools from Synopsys [35].

6.4.4.1 Timing Optimization

Since the logic design obtained for the IP routing table is a combinational circuit,

the timing optimization can be achieved using the pipelining and retiming techniques.

Pipelining involves the insertion of delay elements at specific points of a circuit and

www.manaraa.com

131

NHP, IP[31..0]

NHP

rmp.

FPGA

CLB

CLB

CLB

Figure 6.7 CLB mapping in FPGA.

retiming is the process of moving delays around a circuit such that the overall compu­

tation is unaltered. It aima to move a computation in an attempt to reduce the critical

path, the path with the longest computation time without delays. By pipelining the

computational data path, the throughput in terms of number of address lookups per

unit time can be increased with a little or no additional cost in the overall area and

latency.

6.5 Results and Analysis

The recent research in logic optimization [22, 3] using BDDs has proved that the

logic implementation, with a binary decision tree size of more than 100,000 nodes is

done in less than a second. Subsequently, it is an encouraging factor when the routing

table, with only around 50,000 effective nodes on average, is implemented as a combi­

national logic optimized using BDDs. While the complexity metrics are important for

assessing the feasibility of the implementation, it is equally important to measure the

performance of the schemes for real-time routing tables. We measured the performance

of our scheme with prefix database of real-time snapshots of various routing tables [33].

The implementation of the routing mechanism is performed as discussed earlier. The

lookup time is measured as the propagation delay between the input and output ports

of the combinational logic. This is same as the time taken for signal propagation along

www.manaraa.com

132

the critical path between the input and outports of the logic. The critical path exists

between one of 32 input signals and one of eight outputs. Thus, this measurement of

propagation delay gives the worst-case lookup time. The worst-case lookup time and

the corresponding packet throughput for the proposed scheme, for different routers, are

shown in Table 6.4.

Table 6.4 Lookup time performance analysis of BDD based routing engine.
Throughput is number of packets per second.

Router Pre/%r lookup throughput
count time (ns) (MMion)

MAE-west 29487 5.93 168.63
MAE-east 24792 5.81 172.11
AADS 33796 5.69 175.74
PacBell 6822 4.36 229.35

A main advantage with the proposed scheme is that, for an n-bit. binary encoding

2" number of output ports can be represented and hence, with an increase by one bit

in the binary code twice the current number of output ports can be represented. Thus,

the proposed scheme proves to be more beneficial in the scenario that the number of

physical ports in a router would increase continuously. Besides, when the routing table

is implemented in an FPGA, we can conclude that the IP address lookup rate is bounded

only by the CLB delay. The maximum clock period bound for processing the IP address

lookup would be the sum of 1 CLB delay and the maximum net delay. Previous hardware

schemes have the lookup rate bounded by the RAM access speed. Further, in this scheme

the resources required are utmost one FPGA while the other schemes require an ASIC

and 3 or 4-bank RAM.

6.5.1 Routing Table Update

As discussed in the earlier sections, the routing table update time is one of the

important metrics to be considered for a scheme attempting the IP address lookup

problem. In earlier hardware schemes for IP address lookups, the update scheme is

www.manaraa.com

133

based on the assumption of availability of redundant hardware resources, which can be a

duplicate memory bank [28] or Content Addressable Memories (CAMs). When one unit

is actively involved in the routing of packets, the redundant unit is used by the backbone

router to update the routing table offline. The two units are switched alternatively for

routing mechanism in a periodical fashion. In our scheme too we assume a similar

mechanism. In this scheme, we show that when there is an update in the routing table,

then in most cases, not all of the logic blocks have to be recomputed, thus reducing the

computational complexity. For example if a prefix 11* is inserted with an associated

next hop port to be 1 into the routing table shown in Table 6.1, then the new routing

table would be as shown in Table 6.5.

Table 6.5 Modified routing table.

P r e f i x length
* 0 0
0* 1 1
01* 2 3
10* 2 2
11* 2 1
001* 3 1
101* 3 2

The binary decision tree for the modified routing table would be as shown in Fig-

ure 6.8(a). It is obvious that there is no change in the BDD representation for the output

bit while the slightly modified BDD representation for output bit is as

shown in Figure 6.8(b).

However, this update of the logic may not be that simple for the 32-bit IP MAE-east

routing table, but is also not as complex as assumed in general. To demonstrate this

simplicity in updating the routing table, we have considered two consecutive snapshots

of the MAE-east routing tables from [33], with the number of prefixes 19477 and 19525,

respectively. The analysis for the updating of the table is done in terms of the number

of nodes at each level, in the binary decision tree for the latter routing table that differ

www.manaraa.com

134

Figure 6.8 (a) Binary decision tree representation of the modified rout-
ing table. Dotted nodes are redundant, (b) Modified BDD for
ma.

in the output as compared to the corresponding nodes in the binary decision tree for the

former routing table. Encouraging results have been obtained during this analysis and

the results are shown in Table 6.6.

It is interesting to note that there is none or a significantly smaller variation in the

output between the consecutive routing tables at the higher levels (level 0 to 15) and the

lower levels (level 25 to 31). As is commonly known, the change in the logic would be

minimal when the changes are minimum at higher levels in the binary decision tree, and

we can observe that the same is the case in the current scenario. Further more, it can be

observed that the number of nodes, in the levels 16 to 24, that differ in their outputs, are

significantly smaller. Based on the observations, it can be safely concluded that, when

the routing table is updated, there would only be a partial change in the combinational

logic for each of the output bit. Thus the reconfiguration of only those logic segments,

that need to have the updated logic, can be done. The commercial availability of partially

reconfigurable FPGAs makes this update scheme even more attractive, where in, only

those CLBs that have a modified design can be reconfigured leaving the remaining CLBs

unaltered.

www.manaraa.com

135

Table 6.6 Number of corresponding nodes in each level of binary decision
trees that differ in their output. The two binary decision trees
compared are for adjacent snapshots of real-time MAE-east rout­
ing table.

Level
Number of nodes

Level
Mffo

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 1 1 0 2 2 0
9 0 0 2 1 1 1
10 0 0 0 1 1 0
11 0 0 0 1 1 0
12 0 1 1 3 3 1
13 0 2 2 4 4 2
14 0 4 4 6 6 4
15 0 8 7 8 8 8
16 1 16 14 14 15 17
17 2 24 23 25 23 24
18 6 35 32 33 33 37
19 20 36 37 40 38 35
20 9 8 10 6 11 5
21 5 4 7 5 6 3
22 7 3 5 4 4 6
23 8 11 10 10 11 7
24 31 42 34 34 39 31
25 0 0 0 0 0 0
26 0 0 0 0 0 0
27 0 0 0 0 0 0
28 0 0 0 0 0 0
29 0 0 0 0 0 0
30 0 0 0 0 0 0
31 0 0 0 0 0 0

www.manaraa.com

136

6.5.2 Scalability to IPv6

To demonstrate that an optimized combinational logic can be obtained for a mapping

between 128-bit long IP address of IPv6 and the binary encoded next hop port, it would

be appropriate to show that the number of effective nodes that need to be processed

by the BDD reduction techniques is significantly smaller than the theoretical upper

bound. The performance analysis of our scheme in IPv4 was feasible since real-time

32-bit routing table were readily available [33]. However, a similar analysis was not

possible in IPv6 due to the nonavailability of the routing table and hence, to start with,

we had to construct a routing table in line with the specifications of IPv6 protocol.

The building of the IPv6 routing table is done by incorporating the best-effort unicast

address called aggregatable global unicast address [5]. This address format was designed

to facilitate scalable Internet routing, by providing an address hierarchy Sow aggregation.

The address format has a fixed structure as shown in Figure 6.9 and is organized into

a three level hierarchy: Public Topology; Site Topology; and Interface Identifier. The

Public Topology consists of a two level hierarchy of service providers with a Top-Level

Aggregation Identifier (TLA ID) and a Next-Level Aggregation Identifier (NLA ID).

The TLA ID is initially to be restricted to 13 bits which translates to 8192 routers in

the core IPv6 network. This was done to constrain core routing table sizes. The NLA

ID is 24 bits long and allows for a flat or hierarchical allocation of the NLA address

space. The Site-Level Aggregation Identifier (SLA ID) is 16 bits long. It is used by an

individual organization to define its local address hierarchy and subnets.

The routing table constructed using the described IPv6 address format constituted

a large database of 400,000 prefixes with prefix length ranging from 0 to 128 bits. The

number of output ports were 512 and hence a 9-bit binary code is used to encode the

NHP. The database is built such that the prefix length distribution in the IPv6 routing

table should ratify the hierarchical topology of aggregatable global unicast address. The

number of effective nodes are obtained during the construction of the binary decision tree

for the IPv6 routing table with 128-bit long address. It is observed that the construction

of the binary decision tree for the IPv6 routing table required only 13.5 x 10^ effective

www.manaraa.com

137

3 13 8 24 16 64

FP TLA

ID
S

NLA

ID

SLA

ID
Interface ID

Public Topology Site
Topology

FP: Format Prefix , TLA ID: Top-Level Aggregation Identifier

RES: Reserved for future use, NLA ID: Next-Level Aggregation ID

SLA ID: Site-Level Aggregation ID

Figure 6.9 Aggregatable Global Unicast Address for IPv6.

which is enormously insignificant as compared to the theoretical upper bound of 6.8 x

10**. Further, when the output port is encoded with the binary code and the reduction

procedure is applied on each of the trees for individual binary output bits, the number

of effective nodes obtained were only 7 x 10^, around 51% of the actual effective nodes.

Thus the significantly smaller number of nodes that need to be processed in the BDD

solving of the logic shows that the scheme is scalable for the forthcoming IPv6. The

implementation of the routing table and the measurement of the lookup time in IPv6

routing is reserved for our future study.

6.6 Summary

With the advancements in the communication link technologies the IP address lookup

is becoming a major bottleneck in router technologies. We propose a reconfigurable

hardware solution, using the well received concept of Binary Decision Diagrams (BDDs),

that provides an efficient IP address lookup along with providing a better scheme for

updating the routing table. The argument, to support the adoption of BDD techniques

for obtaining an optimized combinational logic, has been put forward by showing the

fact that the number of effective nodes required to represent a 32-bit IP address routing

table is significantly smaller than the theoretically required number of nodes. Besides,

it has been shown that this number of effective nodes can be further reduced when the

www.manaraa.com

138

next hop port is represented with a binary code and a tree representation is obtained for

each of the output bits. The implementation of the routing scheme shows that the BDD

hardware engine gives a throughput of up to 172.1 Million lookups per second (Mips)

for a large MAE-east routing table with 24,792 prefixes, a throughput of up to 168.6

Mips for an MAE-west routing table with 29,487 prefixes, and a throughput of up to

229.3 Mips for the Pacbell routing table with 6,822 prefixes. Thus, a data throughput

of 200 Gbps (with an average packet size of 1000 bits) can be obtained in the router

implemented with the BDD based hardware address lookup engine.

Following the implementation of the scheme with the analysis of its performance in

terms of the lookup time and packet throughput in IPv4 routing, and the proof that

the processing time for the logic optimization in IPv6 routing tables is well under limit

due to the emphatically smaller number of effective nodes, the next step is to obtain an

implementation of the scheme for IPv6 and measure the lookup time.

www.manaraa.com

139

7 CONCLUSIONS

Applications that demand either higher on-chip computing power or larger on-chip

memory bandwidth are continuously emerging. Processor researchers and designers are

continuously facing the uphill task of simultaneously meeting these two demands by var­

ious applications. In this dissertation, we proposed vWopftue Aegwfer architecture, a

novel architecture to provide a feasible solution and address the above problems concur­

rently. In the first phase, TriBank Register file, an effective register file organization that

aims to simultaneously meet two main goals of providing a small register access time to

enable a faster processor cycle time, and provide a large number of registers to enable

dispatching as many instructions as possible to issue window for extracting higher ILP.

Implementation of the TYiBank register file organization, as compared to a conventional

monolithic register file in an 8-wide out-of-order issue superscalar processor enhanced

the throughput in instructions per cycle (IPC) by 3% and 14%, for Speclnt2000 and

SpecFP2000, respectively. When the register file access time is factored in, the instruc-

tion throughput is enhanced up to 56% and 96%, for Speclnt2000 and SpecFP2000,

respectively.

In the second phase, the vUqptioe Aapafer /He Comptdin# (ARC) unit is developed,

to provide a higher on-chip computing capacity by executing a compute-intensive func­

tion, and to provide a larger register file resources to meet the memory bandwidth

requirements. Results show a performance increase of up to 12%, when an out-of-order

8-wide issue superscalar processor is supplemented with the ARC unit to process matrix

multiplication, a compute-intensive core function in most multimedia applications. The

dissertation also discussed the microarchitecture level details for the implementation of

the ARC unit.

www.manaraa.com

140

The dissertation further discussed the high performance of the Reconfigurable Func­

tional Cache (RFC) based processor in computing various multimedia applications, and

its ability to deliver such high performance even while consuming lesser amount energy.

Further, in continuance of our effort to build efficient adaptive architectures with im­

proved performance, various RFC configuration schemes have been studied. A detailed

study of the performance analysis of the architecture, in terms of the execution time

of the application, is given. The impact of various architectural parameters and the

factors governing the structure of an application over the execution time of an applica-

tion has been extensively studied. With the help of the study undertaken, the design of

ABC microprocessor can be incorporated with the dynamic decision capability, so that

appropriate RFC configuration scheme is chosen dynamically for running a particular

application.

The dissertation also discussed a compute intensive application that forms a bot-

tleneck in the design of an effective network processor. The dissertation proposed a

reconfigurable hardware solution, using the well received concept of Binary Decision

Diagrams (BDDs), that provides an efficient IP address lookup along with providing a

better scheme for updating the routing table. The implementation of the routing scheme

shows that the BDD hardware engine gives a throughput of up to 172.1 Million lookups

per second (Mips) for a large MAE-east routing table with 24,792 prefixes, a throughput

of up to 168.6 Mips for an MAE-west routing table with 29,487 prefixes, and a through­

put of up to 229.3 Mips for the Pacbell routing table with 6,822 prefixes. Thus, a data

throughput of 200 Gbps (with an average packet size of 1000 bits) can be obtained in

the router implemented with the BDD based hardware address lookup engine.

7.1 Future Research

Further investigations involve the study of performance of proposed yUop#«e Ae/ia-

fer /He architecture in executing various multimedia and signal processing applications

that have the matrix multiplication as the core compute-intensive function. The study

also requires the development of a compiler that automatically extracts the matrix mul­

www.manaraa.com

141

tiplication function in an application and generates a suitable sequence of instructions to

perform the computation in the ARC unit. A mechanism, with a suitable support at the

compiler and the microarchitecture level, needs to be devised to support the dynamic al­

location of the ARC resources for computation and register file purposes. With the help

of such mechanism, an effort can be made towards achieving a balanced computation

for higher performance in superscalar processors.

Following the implementation of the IP address lookup scheme, with the analysis of

its performance in terms of the lookup time and packet throughput in IPv4 routing, and

the proof that the processing time for the logic optimization in IPv6 routing tables is

well under limit due to the emphatically smaller number of effective nodes, the next step

is to obtain an implementation of the scheme for IPv6 and measure the lookup time.

www.manaraa.com

142

BIBLIOGRAPHY

[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers, Vol.

c-27, No. 6:509-516, June 1978.

[2] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. Reducing the complex­

ity of the register file in dynamic superscalar processors. Proc.

International Symposium on Microarchitecture, MICRO-34, pages 237 248, 2001.

[3] V. Bertacco and M. Damiani. The disjunctive decomposition of logic functions.

Proc. IEEE/ACM International Conference on Computer-Aided Design, ICC AD,

pages 78-82, 1997.

[4] E. Borch, E. Tune, S. Manne, and J. Emer. Loose loops sink chips. Proc. EipAfA

International Symposium on High-Performance Computer Architecture, pages 270 -

281,2002.

[5] P. Boustead and J. Chicharo. Label switching using the ipv6 address hierarchy. Proc.

7EEE GfoW TWecommtmicofiona CoTi/erence, GIOBECOM gOOO, Vol. 1:500-504,

2000.

[6] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a bdd

package. Proc. 27th IEEE/ACM Design Automation Conference, pages 40 -45, 1990.

[7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-

level power analysis and optimizations. Proc. 27th International Symposium on

Computer Arc/i#ecfwre, pages 83-84, 2000.

www.manaraa.com

143

[8] R. E. Bryant. Graph-based algorithms for boolean function manipulation. TEE#

Transactions on Computers, Vol. c-35:677 691, August 1986.

[9] Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0. Computer

Sciences Department Technical report, 1342, 1997.

[10] Doug Burger, James R. Goodman, and Alain Kgi. Memory bandwidth limitations of

future microprocessors. Proc. 23rd Annual International Symposium on Computer

Architecture, pages 78-89, May 1996.

[11] T. J. Callahan, J. R. Hauser, and J. Wawrzynek. The garp architecture and c

compiler. IEEE Computer, Vol. 33:62 69, April 2000.

[12] Meng-Chou Chang and Feipei Lai. EfEcient exploitation of instruction-level par-

allelism for superscalar processors by the conjugate register file scheme. IEEE

Transactions on Computers, Vol. 45:278 -293, March 1996.

[13] Chung-Ho Chen and A. K. Somani. Architecture technique trade-o@s using mean

memory delay time. ZEEE Thmaocftona on Compufera, Volume: 45, Issue: 10:1089-

1100, October 1996.

[14] T. Chiueh and P. Pradhan. High-performance ip routing table lookup using cpu

caching, fnoc. IEEE ZAfFOCOM'Pg, Vol. 3:1421-1428, 1999.

[15] J. L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham. Multiple-banked regis-

ter file architectures. Proc. 27th Annual International Symposium on Computer

ArcWecZwre, pages 316-325, 2000.

[16] W. J. Dally. Interconnect-limited vlsi architecture, f roc. ZEEE Zn(emo(ionoZ Con-

ference on Interconnect Technology, pages 15 17, 1999.

[17] A. DeHon. Dpga^coupled microprocessors: commodity ics for the early 21st century.

Proc. IEEE Workshop on FPGAs for Custom Computing Machines, pages 31 39,

1994.

www.manaraa.com

144

[18] A. DeHon. Dpga-coupled microprocessors: commodity ics for the early 21st century.

7EEE Workshop on FPCAs /or Custom Computing Machines, pages 31-39, 1994.

[19] A. DeHon. The density advantage of configurable computing. ZEEE Computer,

33:41-49, April 2000.

[20] A. DeHon and J. Wawrzynek. Reconfigurable computing: what, why, and im-

plications for design automation. Proc. 86th. ACM/IEEE Conference on Design

Automation, pages 610- 615, 1999.

[21] A. Donnelly and T. Deegan. Ip route lookups as string matching. Proc. 25th Annual

IEEE Conference on locof Computer JVettuon&s, 1CAT, pages 589-595, 2000.

[22] R. Drechsler and W. Gunther. Optimization of sequential verification by history-

based dynamic minimization of bdds. Proc. IEEE International Symposium on

Circuit and Systems, ZS'CA^, Vol. 4:737-740, 2000.

[23] E. M. Sentovich et al. Sis: A system for sequential circuit synthesis. Afemonzndwm

No. UCB/ERL M92/4-1, Electronics Research Laboratory, University of California,

BerWey, 2001.

[24] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. Memory-system design con­

siderations for dynamically-scheduled processors, Proc. <%th Annua/ ZntemationoZ

Symposium on Computer Architecture, pages 133-143, 1997.

[25] K. I. Farkas, N. P. Jouppi, and P. Chow. Register file design considerations in

dynamically scheduled processors, Proc. Second Interna tionoi Symposium on Zfigh-

Per/ormonce Computer Architecture, pages 40-51, 1996.

[26] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University

Press, USA, 1989.

[27] A. Gonzalez, M. Valero, J. Gonzalez, and T. Monreal. Virtual registers. IEEE

Fourth international Conference on #igh-PeT/ormance Computing, pages 364-369,

1997.

www.manaraa.com

145

[28] P. Gupta, S. Lin, and N. McKeown. Routing lookups in hardware at memory access

speeds, froc. 7EEE ZATFOCOM'Pg, Vol. 3:1240-1247,1998.

[29] J. R. Hauser and T. J. Callahan. Personal communication. University of California

- Berkeley, November 2001.

[30] J. R. Hauser and J. Wawrzynek. Garp: a mips processor with a reconfigurable

coprocessor. Proc. IEEE Symposium on Field-Programmable Custom Computing

MocAmes, pages 12-21, April 1997.

[31] John L. Hennessy and David A. Patterson. Computer architecture: A quantitative

approach. Moryon Âow/nwm, California, USA, 1996.

[32] Hion Yi-Liang Hsiao and Chein-Wei Jen. A new hardware design and fpga im-

plementation for internet routing towards ip over wdm and terabit routers. Proc.

IEEE International Symposium on Circuits and Systems, IS CAS 2000, Vol. 1:387-

390,2000.

[33] http://www.merit.edu/ipma. Routing-analysis, internet performance measurement

and analysis (ipma) project, on&ne, February 15, 2001.

[34] M. D. Powell I. Park and T. N. Vijayakumar. Reducing register ports for higher

speed and lower energy. Proc. 35th Annual International Symposium on Microar­

chitecture, 2002.

[35] Synopsys Inc. http://www.synopsys.com/. February 10, 2002.

[36] Texas Instruments. Tms320c6000 benchmarks.

http://wurw.ti. com/sc/docs/products/dsp/c6000/62bench.htm, October 10, 2000.

[37] R. Joseph and M. Martonosi. Run-time power estimation in high performance

microprocessors. Proc. International Symposium on Low Power Electronics and

Deaign, pages 135-140, 2001.

http://www.merit.edu/ipma
http://www.synopsys.com/
http://wurw.ti

www.manaraa.com

146

[38] W. Kautz. Cellular logic-in-memory arrays. IEEE Zhinaoctions on Computers, Vol.

C-18:719-727, August 1969.

[39] R. E. Kessler. The alpha 21264 microprocessor. ZEE# Micro, Vol. 19:24-36, March-

April 1999.

[40] T. Kijkanjanarat and H. J. Chao. Fast ip lookups using a two-trie data struc­

ture. Proc. Global Telecommunications Conference, GLOBECOM, Vol. 2:1570

1575,1999.

[41] H. Kim, A. K. Somani, and A. Tyagi. A reconfigurable multifunction computing

cache architecture. IEEE Transactions on Very Large Scale Integration (VLSI)

^yatema, Vol. 9:509-523, August 2001.

[42] Huesung Kim. Towards adaptive balanced computing (abc) using reconfigurable

functional caches (rfcs). Ph. D. Dissertation, Dept. of Electrical and Computer

Engineering, Iowa State University, July 2001.

[43] A. Kumar. The hp pa-8000 rise cpu. IEEE Micro, Vol. 17:27-32, March-April 1997.

[44] H. T. Kung. Memory requirements for balanced computer architectures. Proc.

Annual International Symposium on Computer Architecture, pages 49 54, 1986.

[45] S. Y. Kung. Vlsi array processors. Prentice #oW, USA, 1988.

[46] B. Lampson, V. Srinivasan, and G. Varghese. Ip lookups using multiway and mul-

ticolumn search. Proc. IEEE IJVFOCOM'P#, pages 1248-1256, 1998.

[47] A. R. Lebeck, J. Koppanalil, Tong Li, J. Patwardhan, and E. Rotenberg. A large,

fast instruction window for tolerating cache misses. Proc. 29tA Annuo! Intemotiono!

Symposium on Computer Architecture, pages 59-70, 2002.

[48] Chunho Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: a tool for

evaluating and synthesizing multimedia and communications systems. Proc. Thirti­

eth Annual IEEE/ACM International Symposium on Microarchitecture, pages 330

335, 1997.

www.manaraa.com

147

[49] J. Llosa, M. Valero, and E. Ayguade. Non-consistent dual register files to reduce

register pressure. Proc. First ZEEE 5"ympoaium on ^igh-Peryormoncc Computer

Architecture, pages 22-31, 1995.

[50] A. McAuley, P. Tsuchiva, and D. Wilson. Fast multilevel hierarchical routing table

using content-addressable memory. U.S. Patent serial number 034444> 1995.

[51] D. Morrison. Patricia - practical algorithm to retrieve information coded in al­

phanumeric. Journal ofthe ACM, Vol. 15, No. 4:514-534, October 1968.

[52] M. Moudgill, K. Pingali, and S. Vassiliadis. Register renaming and dynamic spec-

ulation: An alternative approach. Proc. 26th Annual International Symposium on

Microarchitecture, pages 202-213, 1993.

[53] J. Pan N. Huang, S. Zhao and C. Su. A fast ip routing lookup scheme for gigabit

switch routers. Proc. IEEE /WFOCOM'PP, Vol. 3:1429-1436, 1999.

[54] P. Newman, G. Minshall, and L. Huston. Ip switching and gigabit routers. IEEE

Communications Magazine, Vol. 35, No. 1:64 69, January 1997.

[55] S. Nilsson and G. Karlsson. Ip address lookup using lc-tries. IEEE Journal on

Selected Areas in Communications, Vol. 17, No. 6:1083 1092, June 1999.

[56] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar

processors. Proc. 24th Annual International Symposium on Computer Architecture,

pages 206-218, 1997.

[57] D. Pao, C. Liu, A. Wu, L. Yeung, and K. S. Chan. Efficient hardware architecture

for fast ip address lookup. Proc. ZEEE ZMFOCOM'2002, Vol. 3, 2002.

[58] Keshab K. Par hi. Vlsi digital signal processing systems design and implementation.

Wi/ey, New Jersey, USA, 1999.

[59] R. Razdan and M. D. Smith. A high-performance microarchitecture with hardware-

programmable functional units. Proc. 27th AnnuaZ International Sympoaium on

Microarchitecture, MfCRO-27, pages 172-180, 1994.

www.manaraa.com

148

[60] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D. Owens.

Register organization for media processing. Proc. Sixth International Symposium

on High-Performance Computer Architecture, pages 375-386, 2000.

[61] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous. Survey and taxonomy of

ip address lookup algorithms. IEEE A^eftuork, Vol. 15, Issue: 2:8-23, March-April

2001.

[62] R. M. Russell. The cray-1 computer system. Reading in Computer Architecture,

Monfon fTau/rnan, pages 40-49, 2000.

[63] P. Shivakumar and N. P. Jouppi. Cacti3.0: An integrated cache timing, power, and

area power model. DEC WRZ, AeaearcA, 2001/2, 2001.

[64] K. Sklower. A tree-based packet routing table for berkelev unix. Proc. Winter

Usenix Conference, pages 93-99, 1991.

[65] J. E. Smith and G. S. Sohi. The microarchitecture of superscalar processors. Pro-

ceedinga o/ (he 7EEE, Vol. 83:1609-1624, December 1995.

[66] V. Srinivasan and G. Varghese. Fast address lookups using controlled prefix expan-

sion. Proc. ACM Sïgmefricapages 1-11, June 1998.

[67] H. S. Stone. A logic-in-memory computer. IEEE Thmaocfiona on Composera, pages

73-78, January 1970.

[68] J. Swensen and Y. Patt. Hierarchical registers for scientific computers. Proc. In­

ternational Conference on Supercomputing, pages 346 353, 1988.

[69] D. E. Taylor, J. W. Lockwood, T. S. Sproull, J. S. Turner, and D. B. Parlour.

Scalable ip lookup for programmable routers. Proc. IEEE Z/VFCCCM'2002, Vol. 3,

2002.

[70] K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet traffic patterns and

characteristics. IEEE Wefwort, Vol. 11, No. 6:10-23, November-December 1997.

www.manaraa.com

149

[71] M. Tremblay, B. Joy, and K. Shin. A three dimensional register file for superscalar

processors. Proc. #owow ZnfemofionoZ Con/erence on ^yafem S'ciencaa, Vol.

11:191-201, 1995.

[72] J. H. Tseng and K. Asanovic. Banked multiported register files for high-frequency

superscalar microprocessors. Proc. 30th Annual International Symposium on Com­

puter Architecture, 2003.

[73] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, and

Rebecca L. Stamm. Ebcploiting choice: instruction fetch and issue on an imple-

mentable simultaneous multithreading processor. Proc. 23rd Annual International

5"ympoaium on Computer ArcAifecfure, pages 191-202, 1996.

[74] Henry Hong-Yi Tzeng and Tony Przygienda. On fast address-lookup algorithms.

IEEE Journal On Selected Areas In Communications, Vol. 17, No. 6:1067 1082.

June 1999.

[75] Tomohisa Wada, Suresh Rajan, and Steven A. Przybylski. An analytical access

time model for on-chip cache memories. ZEEE Joumof o/ ̂ oZW-^ofe Circula, Vol.

27:1147-1156, August 1992.

[76] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high-speed pre­

fix matching. ACM Thinaacfiona on Computer %afema, Vol. 19, No. 4:440-482,

November 2001.

[77] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high speed ip

routing lookups. Proc. ACM S7GCOMM '97, Vol. 27, No. 4:25-36, October 1997.

[78] S. Wallace and N. Bagherzadeh. A scalable register file architecture for dynamically

scheduled processors. Proc. Conference on Parallel Architectures and Compilation

TecAntçuea, pages 179-184, 1996.

www.manaraa.com

150

[79] Pi-Chung Wang, Chia-Tai Chan, and Yaw-Chung Chen. A fast ip routing lookup

scheme. Proc. IEEE International Conference on Communications, Vol. 2:1140

1144, 2000.

[80] S. E. Wilton and N. P. Jouppi. An enhanced access and cycle time model for on-chip

caches. DEC WW, AeaeorcA, 93/5, 1994.

[81] R. D. Wittig and P. Chow. Onechip: an fpga processor with reconfigurable logic.

Proc. IEEE Symposium on FPGAs for Custom Computing Machines, pages 126

135, 1996.

[82] Mathew Wojko and Hossam ElGindy. Self configuring binary multiplier for lut ad-

dressable fpgas. Proc. Australasian conference on Parallel and Real-Time Systems,

1998.

[83] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm, Proc.

ACM Conference on Programming Language Design and Implementation, Vol.

26:33-44, May 1991.

[84] N. Yazdani and P. S. Min. Fast and scalable schemes for the ip address lookup

problem. IEEE Conference on High Performance Switching and Routing, pages

83-92, 2000.

[85] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. Chimaera: a high-performance

architecture with a tightly-coupled reconfigurable functional unit. Proc. Jn-

ternational Symposium on Computer Architecture, pages 225 235, 2000.

[86] R. Yung and N. C. Wilhelm. Caching processor general registers. Proc. 7EEE

International Conference on Computer Design: VLSI in Computers and Processors,

ZCCD, pages 307-312, 1995.

[87] V. Zyuban and P. Kogge. The energy complexity of register files. Proc. /nfemoftono/

Symposium on Low Power Electronics and Design, pages 305 310. 1998.

www.manaraa.com

151

ACKNOWLEDGMENTS

First and foremost, I thank my adviser Prof. Arun K. Somani for his constant

guidance, direction, and support. For me, his achievements have been a great source

of inspiration, and it has been an enlightening experience to conduct research under

his guidance. His ability to judge the work, critique the ideas, and instantaneously

put forward the constructive arguments has pushed me to continuously improvise my

researching skills.

I am grateful to Dr. Akhilesh Tyagi for many useful discussions and also for serving

on my committee. I thank Dr. Chang, Prof. Kothari and Prof. Baca for useful

discussions and suggestions, and serving on my committee. I would like to thank Dr.

Gvungho Lee for his many insightful comments, and for suggesting useful references. I

am always grateful to Dr.Manimaran for his friendly advices and suggestions which has

helped me in many ways to bring a shape to my dissertation.

I believe my desire to gain more and more knowledge by pursuing advanced studies

was first kindled by the environment provided by my father. His vast collection of books

at home has made me take interest in reading and researching the literature in a wide

range of subjects. I am always thankful to my father for providing me with such a good

and early start.

I feel am lucky to be bom as the youngest for one good reason. As both my elder

brothers took each step forward in school and finally into the engineering profession

before me, the experiences and lessons learned from each step of theirs have made things

immensely easy for me. It was an experience I could gain without living through it. I

am always thankful to my brothers for providing me with such resources and knowledge.

The wonderful company given to me by my close friends Srinivas (AC), Anil, Ashish,

Vadhi and others at REC Warangal, have made me always long for those days again.

www.manaraa.com

152

Especially, I am always indebted to Srinivas for his constant support in financial, tech­

nical, and moral fronts, which has really helped me face various difficulties in the past

ten years. Also, I am thankful for the encouragement and support I got from Divakar

and my other friends from REC Warangal.

One person who stood by me in my decision to pursue a PhD degree was my sister

Latha. I am always grateful to her for the encouragement and support she gave, and for

urging me not to have second thoughts about it.

When I met Nagaraj on the first day I arrived in Ames I didn't fully comprehend

the impact his company would have on me. The journey with him into the baffling

yet enchanting world of ancient Sanskrit literature, though I am yet to feel the tip of

the iceberg, was truly enthralling until the time he left the place. He was my fnend,

teacher, and guide, who taught me so many things. The umpteen number of discussions

we had on varied subjects like, "meaning of life", literature, music, Upanishads, Advaita

and so on, have made me rave for his company. I look forward, and wish for one more

opportunity, to journey again in his company before the destination arrives.

I am always indebted to Indu for introducing me to the wonderful world of Carnatic

music, during my stay at Iowa State University. She is my good Mend and loving sister

who always made me happy with the great food she cooks. When the going got tough

or when there were a few brief low moments, due to a rejection of paper or for a similar

reason, it was she who encouraged me and motivated me to work harder. I have seen her

to be the most hard working person working toward a Ph D degree, and that inspired

me to a great extent.

The technical discussions I had with Vadhi, Seongwoo Kim, Huesung Kim, Sriram,

Mahadevan and others in the field of Computer architecture have helped my research to

a great extent. I am very much thankful to them for their support.

The time I had at the work place was one of quality because of the wonderful company

I had in the form of Jing, Pallab, Anirban, Sashi, Murari, Srini, and all the other past

and present members of DCNL. Also the company given to me, during my stay at Iowa

State University, by Naveen, Swami, Subbu, Sridhar and others was wonderful. I shall

www.manaraa.com

153

cherish those moments forever.

The support 1 got from my undergraduate research students Yana, Basem, Seng-

Ming, Boon-Siang, Argenis, and Navpreet was immeasurable. Only with their support,

I could convert some of my ideas into implementations, and so was able to publish the

work. I thank all of them for the excellent job they have done for me.

The absolute assurance and support I got from Neelima, since the day I first met her

in October 2002, has helped me gather the last few pieces of my dissertation with a free

and happy mind. I am greatly delighted having her by my side, and am always thankful

to her for the cheerful and spirited ambiance she provides.

This research was partially supported by the grants from National Science Founda-

tion, ANI9973102 and CCR9900601. They are much appreciated.

www.manaraa.com

154

BIOGRAPHICAL SKETCH

This dissertation presents a part of the research work done by Rama Sangireddy

during the period of August 1999 to July 2003, in pursuit of his Ph.D. degree in Com-

puter Engineering at Iowa State University. Earlier, he had received the B.Tech degree

with distinction in Electrical and Electronics Engineering from the Regional Engineer­

ing College, Warangal, India, in 1996, and had earned the Master's degree in Electrical

Engineering from the University of Missouri-Rolla, USA, in 1999. His research interests

include Computer Architecture, Reconfigurable Computing, Computer Communication

Networks, and Fault Tolerant Computing. He is currently a member of IEEE.

	2003
	On-chip adaptive components for balanced computing
	Rama Subba Reddy Sangireddy
	Recommended Citation

	tmp.1410282563.pdf.U2ypo

